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Abstract

Reconstructing connectivity of neuronal networks from single-cell activity is essential to understanding brain function, but the
challenge of deciphering connections from populations of silent neurons has been largely unmet. We demonstrate a protocol
for deriving connectivity of simulated silent neuronal networks using stimulation combined with a supervised learning algo-
rithm, which enables inferring connection weights with high fidelity and predicting spike trains at the single-spike and single-
cell levels with high accuracy. We apply our method on rat cortical recordings fed through a circuit of heterogeneously con-
nected leaky integrate-and-fire neurons firing at typical lognormal distributions and demonstrate improved performance during
stimulation for multiple subpopulations. These testable predictions about the number and protocol of the required stimulations
are expected to enhance future efforts for deriving neuronal connectivity and drive new experiments to better understand
brain function.

NEW & NOTEWORTHY We introduce a new concept for reverse engineering silent neuronal networks using a supervised learn-
ing algorithm combined with stimulation. We quantify the performance of the algorithm and the precision of deriving synaptic
weights in inhibitory and excitatory subpopulations. We then show that stimulation enables deciphering connectivity of heteroge-
neous circuits fed with real electrode array recordings, which could extend in the future to deciphering connectivity in broad bio-
logical and artificial neural networks.

connectivity; microelectrode arrays; reverse engineering; supervised learning

INTRODUCTION

Deciphering the function of neurobiological networks hinges
on proper determination of connectivity at the single neuronal
level (1–4). Uncovering the specific circuit connectivity and
how it mediates neuronal firing can then lead to more effective
therapies for brain disorders (5–10). Different methodologies
have been used to derive neural coupling at the neuronal level
(11–16) and at the brain regional level (17–19). Current efforts
involve reconstructing highly detailed structural connections
(11, 20, 21) or deriving putative monosynaptic connections from
large-scale electrophysiological recordings (15, 22) and optical
imaging (2, 16, 23, 24). Notwithstanding the growing availability
and increased precision of neurological imaging modalities,
multiplexed electrophysiological recordings of action potentials
bymicroelectrode arrays (MEAs) are still themainstay input for
decoding connectivity at microcircuit resolution (14, 25, 26).

MEAs provide readouts at increasingly larger scales, with recent
probes able to provide in vivo recordings of up to thousands of
units in parallel (27–30).

Most studies rely primarily on active units to derive con-
nectivity and largely exclude nonfiring or minimally active
neurons. However, numerous groups present evidence that
more than half of the neurons in the brain are silent, firing at
very low frequencies (31, 32) and having highly specialized
receptive fields (33–35). Minimally active neurons do not fire
spontaneously or participate in oscillatory activity but
instead usually fire at rates of 1 spike/min or less (36–38),
with some groups reporting frequencies of as low as 0.001
Hz (39) depending on the brain region and task studied. The
proportion of silent neurons in a typical brain tissue varies,
ranging between at least 10–20% in the sensory cortex (38,
39) and as much as 66% in the motor cortex (36). Low firing
rates limit the accuracy of network reconstruction, because
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of the inherently low information content at baseline con-
ditions. Electrical stimulation (40, 41), sensory stimula-
tion (42, 43), and neuropharmacological manipulations
(44–46) are often used in neurobiological research to per-
turb a system above baseline and could therefore activate
silent neurons and thus improve the inference of network
connectivity.

In this work we demonstrate a supervised learning method
to analyze the use of stimulation for determining connectiv-
ity between postsynaptic neurons and heterogeneous popula-
tions of both silent and active presynaptic neurons. We test
our method on simulated spike trains and apply it on experi-
mental multielectrode array data of rat cortical neurons,
using circuits of leaky integrate-and-fire (LIF) neuronal mod-
els. We show that repetitive stimulation epochs can evoke ac-
tivity that is sufficient for determining the synaptic weights
of the entire neuronal population. We characterize the per-
formance of our algorithm for determining weights from
excitatory, inhibitory, and unconnected neurons in the popu-
lation and compare the ability of the method to predict spike
trains. This approach presents a new platform to increase the
performance of learning algorithms for reconstructing neuro-
nal networks and for using neuronal stimulation to decipher
large-scale brain circuitry.

METHODS

Simulated Neuronal Population Spike Trains

We generated spike trains for populations of neurons (size
ranging between 200 and 2,000 cells) recorded during stim-
ulus response. Sixty-six percent of the spike trains corre-
sponded to “silent” neurons [firing at 1 spike/min, or 0.017
Hz (35, 47)], and the rest corresponded to responsive neurons
[mean firing rate was 20 Hz (48, 49)]. For feedforward per-
ceptron networks spikes were generated by sampling ran-
domly using a uniform distribution with a probability of 1/f,
and for recurrent neuronal circuits spike distribution was
lognormal (l = 3.7 Hz, r = 3.5 Hz). In addition to the above
condition, we compared results using simulated spike trains
from a population with no silent neurons, where all the 200
units fired at 20 Hz (hyperactive network).

Feedforward Integrate-and-Fire Model and Connectivity

For feedforward perceptron networks we simulated post-
synaptic neurons as simple integrate-and-fire (IAF) neurons
receiving inputs from 100 out of the total population spike
trains. Eighty inputs were set to be excitatory (having posi-
tive weights), and 20 inputs were set to be inhibitory (having
negative weights) (50). Input weights ranged between [�8, 8]
mV, sampled randomly with a uniform distribution. Spikes
in the simple IAF model were generated by summation of
the inputs at each time step (1-ms intervals) using

V ¼
Xn

i¼1
xiwi

y¼ 1; V > threshold
y¼0; V� threshold ð1Þ

where V is the membrane potential of the postsynaptic neu-
ron, xi is the input from population neuron i, wi is the weight
of input i, n = total number of neurons, threshold = 20 mV
(with resting membrane potential = 0 mV), and y is the spike

output of the postsynaptic neuron. All models were con-
structed inMATLAB 2020a (MathWorks Inc, Natick, MA).

Leaky Integrate-and-Fire Recurrent Circuits

For recurrent circuits we used leaky integrate-and-fire (LIF)
neuronal models to enable tonic excitability in response to
input (51). Postsynaptic spike at time t þ Dt was determined
by a threshold and reset mechanism:

Vm t þ Dtð Þ ¼ Vm tð Þ þ Dt � � Vm tð Þ � Ve½ � þ Im � Rm

sm
ð2Þ

where Vm is the membrane potential, Ve is the resting poten-
tial (�75 mV), Cm is the membrane capacitance (100 pF), and
Rm is the input resistance (10 MΩ), with a time constant sm =
Cm � Rm = 1 ms. Im is the membrane current defined as sum
total of presynaptic current inputs:

Im ¼ Ipost

X

i

wi � spikei ð3Þ

contributed by each presynaptic cell iwith weight wi, active if
spikei = 1 and with postsynaptic current Ipost = 1 nA. A postsy-
naptic spike is generated if Vm > Vt (where Vt is threshold
voltage), and Vm is reset toVreset.

Circuit Connectivity

Circuits of interconnected LIF neurons were constructed
with nonrandom connectivity distribution: neurons were
connected with probabilities P = 0.13 for unidirectional con-
nections and Prep = 0.06 for reciprocal connections (52).
Reciprocal connections were 1.5 times stronger than unidir-
ectional connections. Each neuron in the circuit had a total
presynaptic neural population of 120 cells with excitatory-to-
inhibitory weight ratio of 4:1 and weights a range of [�8, 8]
mV. Firing rate distribution for circuit cells was lognormal
(l = 0.8703 Hz, r = 0.8749 Hz).

Deriving Connectivity

We used the spike trains of the postsynaptic neuron and the
presynaptic population as ground-truth data for deriving con-
nection weights with a perceptron algorithm (53, 54). At each
iteration of the algorithm, the derived connection weights
were updated using the perceptron learning rule:

Dwi ¼ lr y� y0
� �

xi ð4Þ
Dwi is the update for input weight i, lr is the learning rate,

y is the spike output of the postsynaptic neuron in the train-
ing data, and y0 is the output guessed by the perceptron
model. We used 2,500 trials (each of 1,000-ms duration) to
train the perceptron model with mean optimized learning
rate of 0.01 (Fig. 1F).

Performance Measures

We evaluated the performance of the algorithm for deriv-
ing connectivity by the root mean square error (RMSE)
between the derived weights and actual input weights. In
addition, we evaluated performance by using the derived
weights to predict spikes, as measured by the average of the
prediction sensitivity (true positive rate, TPR) and precision
(positive predictive value, PPV):
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TPR ¼ 1� 1
jSaj

X
k2Sask � ŝk ð5Þ

PPV ¼ 1� 1
jSpj

X
k2Sask � ŝk ð6Þ

where Sa represents the subset of events in which a postsynaptic
spike occurs and Sp represents the subset of events in which the
algorithm predicts there is a postsynaptic spike. Sk is the kth

event in Sa, and ŝk is kth event in the corresponding position of
predicted spikes. We tested the algorithm performance using 10
randomized simulations, with different spike trains and connec-
tivity. The test data consisted of 2,500 trials of 1000ms each.

Stimulated Network Condition

We examined the effect of stimulation on deriving con-
nectivity, setting 50 of the input population spike trains
(cells chosen at random) to fire at 60Hz during each stimula-
tion duration (200 ms) based on commonly used parameters
(55). We examined results as a function of the number of
stimulations, ranging from 1 to 15.

Connection Classification

We classified connection types for feedforward networks
based on selected ranges (Table 1). We classified weights as
unconnected using a small ɛ (0.16 mV), which was the RMSE
of derived weights for actual unconnected neurons in per-
ceptron models that had high accuracy (performance >
0.99). We calculated the accuracy of classification for each
connection type as the probability of synaptic weight w
being correctly classified, given the actual weight.

Experimental Data as Model Input

Neural recording data fed as input to feedforward and
recurrent networks were acquired from rat cortical neurons
(A1084001, lot 2214638, Gibco Thermo Fisher Scientific) cul-
tured on microelectrode arrays (MEAs; 60MEA100/10iR-
ITO-gr, Harvard Biosciences) with methods described previ-
ously (25, 56). MEAs were coated with 0.1 mg/mL polyethyle-
neimine (408727, Sigma-Aldrich) and 4 μg/mL laminin
(23017-015, Thermo Fisher Scientific). A volume of 50 lL of
cells was plated for 4 h at 1 million cells/mL on sterilized

Figure 1. Stimulation-mediated derivation of synaptic weights of feedforward neuronal population with silent cells. A: schematic diagram of a neuronal
population of presynaptic neurons forming synapses with an integrate-and-fire postsynaptic neuron (purple), with weights ranging between �8 and 8
mV; 66% of the neurons in the population were silent (firing rate < 0.01 Hz), and the rest were active (firing rate �20 Hz). In the stimulated condition,
25% of the neurons were stimulated (firing rate�60 Hz). The color coding is maintained for the rest of the figure. The postsynaptic neuron received exci-
tatory and inhibitory inputs with a 4-to-1 ratio. B: spike raster of the population spike trains over 1,000 ms. The top 34% of the trains correspond to active
neurons firing at a baseline of 20 Hz. The bottom 66% correspond to silent neurons that fire at 0.017 Hz. Stimulation duration was 200 ms. C: optimal
learning rate was determined by minimizing root mean square error (RMSE) over 100 iterations for a group of representative recurrent networks and
over a range of learning rate values between 10�5 and 10�2. D: derived vs. actual weights in the hyperactive neuron population case (with no silent neu-
rons). The derived weights matched the actual weights (Pearson correlation r = 1.00, P � 0). E: derived vs. actual weights in the realistic neuron popula-
tion case, where 66% of the population are silent. The derived weights deviated considerably from the actual weights (r = 0.44, P < 0.01). F: derived vs.
actual weights in the stimulated population case, where 25% of the population were stimulated to fire at 60 Hz for 100 ms. The derived weights closely
matched the actual weights (r = 0.97, P� 0).G: RMSE of the derived weights vs. actual weights for the cases shown inD–F (n = 10 datasets); error bar is SE.

Table 1. Synaptic weight classification

Strong Inhibitory Weak Inhibitory Unconnected Weak Excitatory Strong Excitatory

w [ (�8, �4) (�4, ɛ) (�ɛ, ɛ) (�ɛ, 4) (4, 8)

w, Synaptic weight; ɛ, root mean square error (RMSE) of derived weights for actual unconnected neurons in perceptron models that
had high accuracy.
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MEA in media (Neurobasal Plus þ 1� GlutaMAX þ 10% fe-
tal bovine serum; Thermo Fisher), maintained in media
without serum, and replaced every 2–3 days. Data were
recorded between days in vitro (DIV) 18 and DIV 22 with an
MZ60 MEA headstage amplifier at 6,104 Hz per channel
streamed through PZ5 neurodigitizer amplifier and RZ5P
base processor (Tucker-Davis Technologies, Alachua, FL).
Total recording duration for each data set was 900 s, begin-
ning with a 60-s stimulation epoch. Stimulation was deliv-
ered globally by ambient temperature change (from 37	C to
room temperature, 60 s). Raw data files were loaded into
MATLAB with TDT Synapse software environment and de-
velopment kit for processing and analysis.

RESULTS

Prediction of Synaptic Weights for Populations with
Silent Neurons Is Improved by Stimulation

We characterized the effect of silent neurons on deriving
synaptic weights from a heterogeneous population (excita-
tory, inhibitory, and unconnected) to a postsynaptic neuron
within an arena of a recording electrode (Fig. 1, A and B) and
characterized the improvement afforded by stimulation (Fig.
1C). Pearson correlation was performed between the inferred
weights and the actual weights to quantify the similarity
between them. As a reference case, we used a hyperactive

neuronal population as a nonrealistic scenario without silent
neurons, for which the algorithm derived synaptic weights
with high accuracy (Fig. 1D; RMSE = 0.01±0.00, Pearson cor-
relation r = 1, P = 0, n = 10 random populations). For the real-
istic neuron population (with silent neurons), the algorithm
failed to predict the weights from silent neurons and also
frommany of the active neurons (Fig. 1E; RMSE = 3.59±0.42,
Pearson correlation r = 0.44, P < 0.01). When the population
was sufficiently stimulated, the algorithm was able to derive
weights with high accuracy (Fig. 1G; RMSE = 0.35±0.06,
Pearson correlation r = 0.97, P� 0, 15 stimulations, 100 itera-
tions; see Supplemental Fig. S1). The stimulation protocol
sufficiently improved the weight prediction of a population
with silent neurons (Fig. 1G) and also for limited fractions of
the network recorded as common in experimental configura-
tions (Supplemental Fig. S2; RMSE decreased by 4.12±0.64).

To evaluate the accuracy of inferred weights of different
connection types before and after stimulation, we compared
the RMSE value of five groups of connections defined accord-
ing to their type (excitatory or inhibitory) and strength (weak,
strong, and unconnected). The RMSEwas improved by stimu-
lation for all types of synaptic weights (Fig 2A; paired t test:
P < 0.05), except for unconnected cells since their error was
small to begin with (P = 0.1). Similarly, the classification accu-
racy of connection types improved by stimulation for all
types, especially for inhibitory connections (Fig 2B; P < 0.05).

Figure 2. Deriving synaptic weights as a function of stimulus and connection type. A: performance of deriving connections of different type (excitatory
and inhibitory) and strength (see METHODS), in the unstimulated and stimulated (red) conditions. Stimulation improved performance for all cases except
the unconnected (paired t test, P < 0.05). RMSE, root mean square error. B: classification accuracy for each connection type in the unstimulated and
stimulated conditions. C: performance of deriving connection weights as a function of stimulus number, for the different connection types as shown in A.
The shaded area around each curve shows the SD. se, Strong excitatory; si, strong inhibitory; wi, weak inhibitory. D: classification accuracy for excitatory,
inhibitory, and unconnected neurons as a function of stimulus number. All error bars denote SE (n = 10 datasets).
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The classification accuracy of unconnected weights was high
in the nonstimulated case and therefore did not improve sig-
nificantly with stimulation. The accuracy of predicted weights
for all connection types improved with increasing the number
of stimuli (Supplemental Fig. S1), particularly for strong inhib-
itory connections (Fig. 2C). The classification accuracy for in-
hibitory and excitatory connections improved drastically with
increasing the number of stimuli, because of the activation of
silent neurons (Fig. 2D).

Spike Prediction Using the Derived Weights

We validated the performance of the derived connection
weights from unstimulated and stimulated populations in
predicting spikes of the postsynaptic neuron, using test data
of the population spikes in the stimulated condition (Fig.
3A). Weights derived from nonstimulated populations pre-
dicted spikes poorly, with a high proportion of false nega-
tives and some false positives. In contrast, derived weights
from stimulated populations predicted postsynaptic spikes
with high accuracy, with the sensitivity and performance of
the model reaching 0.96±0.01 (Fig. 3B) and 0.97±0.01 (Fig.
3C) after 15 stimuli, respectively. We also verified that the
derived weights performed well on population data from the
fully activated condition (Supplemental Fig. S3). To verify
that the stimulation of silent neurons significantly affects
the postsynaptic spike pattern, we stimulated a single strong
excitatory silent neuron and compared the predicted postsy-
naptic spikes, using weights derived from nonstimulated
and stimulated data. Activating the single silent neuron was
sufficient to trigger additional spikes (Fig. 3E, dashed box),
which were not predicted when using weights derived from
nonstimulated population data (Fig. 3E, silent) but were

predicted faithfully using weights derived from stimulated
population data (Fig. 3F, stimulated).

Stimulated Recurrent Circuits

To evaluate performance in a realistic scenario, we tested
the algorithm on recurrent circuits of leaky integrate-and-
fire (LIF) neurons, receiving real experimental data as pre-
synaptic input (Fig. 4). The circuits were constructed as
interconnected hubs with both unidirectional and reciprocal
connections and typical synaptic strength (52, 57) (Fig. 4A)
and displayed lognormal firing rate distributions (Fig. 4A,
inset). A postsynaptic cell received input from six datasets of
64-channel single-unit extracellular microelectrode array
recordings, each with a total duration of 900 s (Fig. 4B).
Then themodel was trained to estimate the synaptic connec-
tions between neurons. Decrease in the difference between
derived and real weights (Dw) was observed to variable
degrees within six subpopulations (strong, medium, and
weak inhibitory/excitatory; see for example Fig. 4, C–E and
F–H, respectively). This effect was observed across all data-
sets (Fig. 4I), with significant improvement seen in weak in-
hibitory, weak excitatory, and medium excitatory (P < 0.015,
n = 6). Performance for a feedforward LIF network receiving
experimental data as input was also improved when the
algorithm was trained on 60-s stimulated multichannel data
and tested on 840 s (Fig. 4B).

Large Neuronal Populations

To determine the data requirements for deriving connection
weights from larger neuronal populations, we calculated the
average spike rate as an estimate of the number of spikes in the
data from populations of sizes ranging from 200 to 2,000

Figure 3. Spike prediction using derived connection weights. A: predicted spikes with weights derived using different number of stimuli. The spike train
at top shows the actual postsynaptic spikes. Listed below are spike trains predicted from populations stimulated with 0–15 stimuli. True positives are
shown in blue; false positives are shown in gray. B: sensitivity of spike prediction as a function of stimulus number. C: precision of spike prediction as a
function of stimulus number. D: 3 examples of spike trains of the postsynaptic neuron in the test data (top) and predicted spikes using derived weights
from the nonstimulated population (middle) and the stimulated population (bottom). Blue spikes are true positives; gray spikes are false negatives. E: 3
examples of spike trains of the postsynaptic neuron in the nonstimulated case (top) and when stimulating 1 strong excitatory silent neuron (middle) and
the predicted spikes using weights derived from the nonstimulated population data (bottom). F: same as E but with predicted spikes using weights
derived from the stimulated population data.
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Figure 4. Application of learning algorithm to realistic circuit with live neuronal recordings. Neural network reconstruction is improved with super-
vised learning of a stimulated network of leaky integrate-and-fire (IAF) neurons fed with live neural recordings. A: circuit configured with 4-to-1
excitatory-to-inhibitory ratio and probabilities P = 0.13 for unidirectional connections and Prep = 0.06 for reciprocal connections. B: recordings fed
to network. Shown are 16 channels, 60 s each, of a total of 64 channels, 900 s each fed to circuit as input (scale bar is 100 lV). C–H: improved
prediction of connectivity for strong/mid/weak inhibitory (I) and excitatory (E) subpopulations divided by agglomerative clustering (Dw = differ-
ence between derived and real weights) I: root mean square error (RMSE) of weight prediction for different subpopulations. J: algorithm perform-
ance with and without stimulation (red and blue, respectively) for 100 iterations. Algorithm was trained on all data indiscriminately. All error bars
denote SE (n = 6 datasets).
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neurons (Fig. 5). The average spike rate increased linearly with
the number of stimulations, and the slope of that relationship
decreased with network size (Fig. 5A). The number of stimuli
necessary to yield a firing rate similar to that in the 200-neuron
population with 15 stimuli increased linearly with population
size (Fig. 5C). We next estimated the degree coverage afforded
by the stimuli in populations of different size, as measured by
the percentage of neurons that get stimulated by the random
stimuli overall (Fig. 5B). The number of stimuli necessary to
get 99% coverage increased linearly with network size (Fig. 5C),
so that <200 stimulations were sufficient to get full coverage
for all the populations examined.

DISCUSSION
In this study, we demonstrated the utility of stimulation

for deriving connectivity of neuronal populations with a sig-
nificant proportion of the network comprising silent neu-
rons, as seen physiologically. To date, the challenge imposed
by silent neurons on deriving connections has remained
largely unexplored. Here we showed that a supervised learn-
ing algorithm combined with a small number of stimulations
enabled inferring connection weights with high fidelity and
predicting spike trains with high accuracy. We have charac-
terized the challenge pressed by silent neurons for different
types of connections and for different population sizes. Our
results make testable predictions about the number and pro-
tocol of the required stimulations, which is expected to
enhance future efforts for deriving neuronal connectivity
that underlies brain function.

We applied our method on heterogeneously intercon-
nected LIF circuits receiving live multichannel neural
recordings as input and demonstrated improved perform-
ance during stimulation for multiple subpopulations.
Implementation of the method for diverse electrophysio-
logical datasets relies on using experimental parameters
for selective and continuous stimulation of interconnected
neuronal subpopulations. Multiplexed single-spike acqui-
sition of connected networks during stimuli is routine
both clinically and preclinically over multiple hours dur-
ing different forms of stimuli (15, 22, 25). Robust changes
in firing rates are prevalent during both sensory and

electrical stimuli, but fine-tuning of firing patterns with
only modest changes in firing rates is also possible. Recent
work demonstrates modulation of subtle features of cortical
activity including phase locking and interspike intervals of
subpopulations, with only minor changes in firing rates (58).
Future expansion of our method will involve burst response
during stimulation that emphasizes changes in spiking pat-
terns over increase in rate, to identify scenarios that suffi-
ciently add to the quantity of information needed for
deriving weights and predicting spikes. Moreover, our simu-
lations suggest the ability to predict subtle changes in firing
rates of up to single spikes evoked by single presynaptic cells
(Fig. 3, E and F). In our circuit-level validation using live neu-
ronal MEA recordings we show that prediction of synaptic
weights can be improved by stimulation (Fig. 4). Further
work using more realistic in vivo datasets and circuits com-
bining both feedforward and feedback circuits can address
this challenge of testing whether single spikes can also be
predicted in scenarios where the number of neurons for a
given network is largely unknown. This offers a way to recon-
struct networks containing neurons with highly selective
receptive field that can also respond to abstract stimuli, a cell
type seen physiologically in animals and humans in the form
of place cells and abstract concept cells (59).

Our tests involve bringing a portion of the population to
above firing baseline as a basis for deriving connectivity.
Some stimulation experiments, particularly involving deep
brain electrical stimulation for neurotherapeutic purposes,
result in reduction of firing rates toward complete inhibition
in some regions and sometimes generate a combination of
excitation and inhibition in response to stimulus (8, 60). The
paradigm we present here assumes targeting of a brain
region excitatory to the network studied. This can in turn
drive the design of new experiments for characterizing mes-
oscale connectivity of anatomical regions in the brain while
also facilitating maximization of the amount of information
acquired about the network. Recent large-scale recordings in
awake rodents provide a viable platform for stimulus-
derived connectivity mapping, demonstrating the activation
of subpopulations across multiple brain regions, spanning
the primary visual cortex, hippocampal, and thalamic

Figure 5. Deriving connectivity for large-scale networks. A: average spike frequency as a function of the number of stimulations for different network
sizes. The frequency increased linearly with the number of stimulations. The slope decreased as the network size increased. B: coverage of the popula-
tion by stimulation, measured by % of the population activated, as a function of stimulus number. The slope of the curve decreased as the size of net-
work increased. C: the number of stimulations needed to reach 99% coverage increased linearly with network size. Similarly, the number of stimulations
needed to reach a frequency of 7.4 Hz (corresponding to the 200 neurons, 15 stimuli case) increased linearly with network size.
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regions in response to constant visual stimulus (29). Such
increasingly accessible large-scale tools for electrophysiol-
ogy will permit methodically locating excitable regions at
single-cell and single-spike resolution across the brain.
Consequently, our results affirm that local electrical stimula-
tion is not likely to facilitate network reconstruction, in large
part because of indiscriminate synchronous firing and false
positive observations that lead to imprecise determination of
synaptic weights (Supplemental Fig. S4). This coincides with
known constraints related to the symmetry of the radius of
influence surrounding an electrode (61) that result in indis-
criminate stimulation at the recorded region and will likely
obscure connectivity manifested in spiking patterns. For pre-
clinical research, however, where optogenetic stimulation is
available at the single-cell type level (62), our results should
lend themselves well where there is a high degree of control
of the number and volumetric distribution of stimulated
neurons. For reconstruction of large-scale networks, we find
that longer stimulation sessions are required, with a linear
relationship between network size and number of stimula-
tion epochs for sufficiently precise derivation of synaptic
weights (Fig. 5). Long-term changes in network connec-
tivity during training over many days (63) suggest that
future studies involving very large-scale electrophysio-
logical recording and long stimulation sessions, network
habituation, and rewiring will have to be included in the
derivation algorithm.

We characterized the use of stimulation to derive connec-
tions from a population of neurons onto a postsynaptic neu-
ron. This enabled a focused investigation of the issue of
silent neurons in deriving connections. Our results and stim-
ulation framework can be used to expand the investigation
into deriving connections from recurrent networks and over-
come additional issues such as spurious connections due to
spike correlations (64). We employed an integrate-and-fire
neuron model with simple implementation of synaptic con-
nections. Although such models are used widely to model
brain networks (65), it will be of general interest to apply our
stimulation framework to derive connections from ground-
truth spiking data obtained from networks with detailed bio-
physical models of neurons and synaptic dynamics (50, 57,
66). We anticipate that overcoming the nonlinear challenges
imposed by realistic neuronal networks will involve using
our framework in tandemwithmethods for deriving connec-
tions based on spike cross-correlations (15, 22) or by using
general-purpose optimization methods such as genetic algo-
rithms ormaximum likelihood (16, 67).

Conclusions

We established stimulation parameters for deriving con-
nectivity of silent neuronal populations by way of a super-
vised learning algorithm. Our algorithm provides network
reconstruction with high fidelity with accurate spike predic-
tion. We characterized performance for different connection
types and population sizes and verified improved predic-
tions for realistic circuits receiving live neural recording as
input. This work establishes a method that is expected to
enhance future efforts for deriving neuronal connectivity
underlying brain function (68).
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