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A B S T R A C T   

Background: Processing neural activity to reconstruct network connectivity is a central focus of neuroscience, yet 
the spatiotemporal requisites of biological nervous systems are challenging for current neuronal sensing mo-
dalities. Consequently, methods that leverage limited data to successfully infer synaptic connections, predict 
activity at single unit resolution, and decipher their effect on whole systems, can uncover critical information 
about neural processing. Despite the emergence of powerful methods for inferring connectivity, network 
reconstruction based on temporally subsampled data remains insufficiently unexplored. 
New method: We infer synaptic weights by processing firing rates within variable time bins for a heterogeneous 
feed-forward network of excitatory, inhibitory, and unconnected units. We assess classification and optimize 
model parameters for postsynaptic spike train reconstruction. We test our method on a physiological network of 
leaky integrate-and-fire neurons displaying bursting patterns and assess prediction of postsynaptic activity from 
microelectrode array data. 
Results: Results reveal parameters for improved prediction and performance and suggest that lower resolution 
data and limited access to neurons can be preferred. 
Comparison with existing method(s): Recent computational methods demonstrate highly improved reconstruction 
of connectivity from networks of parallel spike trains by considering spike lag, time-varying firing rates, and 
other underlying dynamics. However, these methods insufficiently explore temporal subsampling representative 
of novel data types. 
Conclusions: We provide a framework for reverse engineering neural networks from data with limited temporal 
quality, describing optimal parameters for each bin size, which can be further improved using non-linear 
methods and applied to more complicated readouts and connectivity distributions in multiple brain circuits.   

1. Introduction 

There remain fundamental difficulties in decoding brain activity and 
relating it to function across multiple spatiotemporal and sensitivity 
scales (Marblestone et al., 2021; Kleinfeld et al., 2019; Spira and Hai, 
2020). Nervous systems operate as composite biological networks crit-
ical to diverse functions including motor tasks, sensory perception, 
sensation, and memory, carrying intricacies at both the cellular and 
molecular levels across expansive interconnected units and circuits that 
are hard to detect in full (Buzsáki and Mizuseki, 2014; Kaeser and 
Regehr, 2014; Kavalali, 2015). Consequently, the interpretation of 
experimental neural data that are inherently limited in scope relies 
heavily on innovative analysis and automated learning methods to 
extract and predict network features relevant to function (Barak, 2017; 

Kass et al., 2018). Such methods have been used to decipher neural 
circuitry directly from data and predict brain function in clinical 
context, unlocking new possibilities for treatment of neurological dis-
eases (Bokde et al., 2009; Humphries et al., 2018). Extracting mean-
ingful information depends on data quality, scope, and type, with steady 
progress made towards upgrading sensing and hardware capabilities to 
improve the selection and scale of neurobiological data available to in 
silico studies. High density neural probes with increased spatial coverage 
provide chronic electrophysiological readouts of direct spiking activity 
from hundreds and thousands of units (Viventi et al., 2011; Jun et al., 
2017; Angotzi et al., 2019; Steinmetz et al., 2021) but these devices 
remain invasive and provide information from limited regions in the 
brain (Veronica et al., 2019; Salatino et al., 2017). Other readout types 
with reduced temporal detail, such as optical imaging of slow calcium 
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fluctuations, can still offer large scale single unit activity critical to 
understanding neural circuitry (Stosiek et al., 2003; Tian et al., 2009; 
Wei et al., 2021) and can be deconvolved computationally to uncover 
underlying action potential information with reasonable precision 
(Yaksi and Friedrich, 2006; Mishchenko et al., 2023; Rupprecht et al., 
2021). Noninvasive approaches present less tractable options for 
deconvolution both temporally and spatially (Buzsáki et al., 2012; Hai 
and Jasanoff, 2015; Rabut et al., 2020). Whole-brain neuroimaging of 
blood flow was found to partially correlate with electrophysiology 
(Logothetis et al., 2001) and neurotransmitter systems (Zaldivar et al., 
2014; Kringelbach et al., 2020), but emerging sensors are now providing 
direct volumetric recordings of calcium levels (Okada et al., 2018; 
Barandov et al., 2019), neurotransmitter dynamics (Lee et al., 2014; Hai 
et al., 2016; Li and Jasanoff, 2020), and electromagnetic fields (Bok 
et al., 2023; Jasanoff et al., 2020; Hai et al., 2019; Bok et al., 2022; 
Phillips et al., 2022; Bhatt et al., 2023). The temporal resolution for 
these advanced techniques is limited depending on the phenomenon 
studied and the physical hardware of the modality in use, highlighting 
the need for methods to reconstruct network connections from sub-
sampled data that supplement existing approaches. 

Currently established techniques for inferring connectivity from 
direct spiking measurements rely on a spectrum of approaches including 
cross-correlation (CC) (Perkel et al., 1967; Ide et al., 2007; De Blasi et al., 
2019), generalized linear models (GLMs) (Kass and Ventura, 2001; Ren 
et al., 2020), Granger causality (Marinazzo et al., 2011; Casile et al., 
2021), transfer entropy (TE) (Vicente et al., 2011; Mijatovic et al., 2021) 
and others (Bastos et al., 2012; Młynarski et al., 2021; Ren et al., 2023) 
to leverage spike history, information latency, and other dynamics un-
derlying synaptic connectivity. Advanced adaptations to these methods 
parse connectivity information more effectively from data of limited 
quality by combining CC and GLMs to optimize classification for net-
works with varying pre- and post-synaptic firing rates (Kobayashi et al., 
2019). Others explore the specific problem of inferring connectivity 
from subsampled, low-resolution data by correlating signals on various 
temporal scales to produce functional connections (Stevenson and 
Körding, 2010) and expanding on transfer entropy to capture neuronal 
bursting activity (Ito et al., 2011). While significantly advanced, these 
efforts do not explore optimal parameters for inferring connectivity from 
temporally binned conditions. Supervised learning of feed-forward 
perceptron networks are specifically suited for making predictions 
related to synaptic strength and information storage with missing in-
formation and silent synapses (Ren et al., 2023; Brunel et al., 2004). By 
matching learning rates with different network states, it is possible to 
make accurate spike predictions and to quantify information storage and 
learning capabilities. In this work, we develop a learning model based on 
adaptations from the perceptron, typically used to determine presyn-
aptic connectivity from binary events, to construct a basis of imple-
mentation of more considerable models. We use a summation of binary 
presynaptic spike train data within time bins of varying sizes as input for 
supervised learning and demonstrate the performance of the algorithm 
in learning unknown presynaptic weights and predicting unseen post-
synaptic spikes. We then expand on these findings by quantifying the 
effect of temporal resolution on performance at multiple neuronal firing 
rates, representative of active and stimulated neuron states (Gittis et al., 
2010; Harvey et al., 2013; Hashimoto et al., 2003), to provide a general 
guideline for optimal learning rates that can be used under each of these 
conditions. We then test the physiological relevance of the algorithm by 
implementing a three-layer leaky-integrate-and-fire (LIF) network 
model displaying bursting activity and evaluate performance with 
different degrees of access to presynaptic spike data. Moreover, we 
utilize in vitro multielectrode array (MEA) recordings to test the algo-
rithm as a learning mechanism for real data and analyze its ability to 
improve spike prediction for a network without a priori knowledge of 
neural connections. This work lends to neuroscience a useful technique 
for reconstructing biological neural networks from data which repre-
sents discrete neural firing rates rather than precise, single-spike events. 

2. Methods 

2.1. Feedforward network initialization 

We constructed a network model containing a heterogeneous pre-
synaptic cell population (n = 200) with simulated spike trains at firing 
rates ranging between 5 and 80 Hz. Half of the cell population was 
unconnected and half consisted of excitatory and inhibitory cells (4:1 
ratio) connected to a postsynaptic cell, with weights wi ∈ (0 8) and (− 8 
0) (mV), i ∈ {1.n} distributed uniformly (Fig. 1a). Spike trains were 
generated over 5000 trials of 1000 ms duration for each presynaptic cell, 
with each spike representing a single-millisecond event (Fig. 1b). Post-
synaptic spike event y was determined by a simple integrate-and-fire 
mechanism: 

V =
∑n

i=1
wi⋅xi (1)  

y =

{
1,&V > α

0,&otherwise (2)  

Where V is the postsynaptic membrane potential, α = 20 mV is the 
postsynaptic firing threshold, xi and wi are the spike input and weight for 
neuron i, respectively, and n is total number of presynaptic neurons. 

2.2. Firing rate perceptron adaptation 

We utilized a modified perceptron algorithm for supervised inference 
of presynaptic connectivity based on firing rate data. A randomized 
weight matrix was initialized prior to the first iteration. Weights were 
updated every iteration according to the product of learning rate η and 
the sum (Δb)of each discrete error δ = y − yl within time bin b: 

Δb =
∑m

k=l
yk − yl,k (3)  

wi(t+ 1) = wi(t)+ η ∗ Δb⋅xi (4)  

Where l and m are the first and last discrete timepoints in bin b, 
respectively, and y and yl are the true and predicted postsynaptic re-
sponses, respectively. The algorithm was trained over the first 2500 
trials for a total of 100 iterations for each dataset or condition. Bin sizes 
of 1 ms, 5 ms, 20 ms, 100 ms and 200 ms were investigated. For each 
bin size, seven learning rates were independently investigated (1⋅10− 2, 
5⋅10− 3, 1⋅10− 3, 5⋅10− 4, 1⋅10− 4, 5⋅10− 5, 1⋅10− 5), for a total of 35 
Resolution-Rate Combinations (RRC). Temporal resolution of data was 
defined as summation of ground truth single spike events for a given bin 
size (Fig. 1c) and fed into the modified perceptron as input data by 
randomly redistributing the calculated sum of spikes to discrete milli-
second events within the same bin size. 

2.3. Inference of synaptic weights 

The performance P of the adapted perceptron model corresponding 
to the prediction quality of postsynaptic firing rates, was quantified 
according to Eqs. (5)-(7): 

Rb =
∑m

k=l
sk, R̂b =

∑m

k=l
ŝk (5 -6)  

P = 1 −
1
c
∑c

a=1

|Ra − R̂a|

m − l
(7)  

Where, Rb and R̂b represent the sum of true and predicted discrete 
postsynaptic spike events sk and ŝk, respectively, within bin b and 
averaged over the total number of bins c in a training set. Here, s differs 
from y as it represents testing data rather than training data. We used 
root-mean-squared error (RMSE) to determine the ability of the adapted 
perceptron to reconstruct presynaptic weight matrices on the final 
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Fig. 1. Performance of adapted perceptron on varying presynaptic bin sizes for an example network. (a) Representation of a neural network, with a distribution of 
inhibitory and excitatory presynaptic cells connected to a single postsynaptic neuron of interest, and neurons with minimal connection to the postsynaptic cell. (b) 
1000 ms of binary spiking data for the presynaptic cells. Highlighted by the black box is a smaller subset of 10 neurons over 400 ms duration. (c) Depiction of the 
summation of the presynaptic spikes highlighted in panel b into lower resolution time bins. From top to bottom are the discrete 1 ms spikes, followed by 5 ms, 20 ms, 
100 ms and 200 ms bins. Gray boxes depict respective time bin sizes representing the temporal detail fed to the perceptron. (d-h) Comparisons of the inferred 
presynaptic weights with true weights. Each panel depicts the inferred weights provided by the learning rate with the lowest RMSE for each bin size, in order of 
ascending sizes. (i) The root-mean-square error of this representative network was calculated for the inferred weights against the true weights and plotted for each 
combination of predetermined bin size and learning rate. 
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learned weight matrices to quantify the inferred connectivity provided 
by the model for each RRC (Fig. 1d-i). 

2.4. Spike predictions 

We evaluated the accuracy of single-spike predictions by generating 
postsynaptic responses from 5000 newly generated 1000 ms trials of 
presynaptic spike trains. Predicted postsynaptic spikes were calculated 
using inferred weights and compared to the postsynaptic spike gener-
ated using true weights. We determined true positive rate (TPR) for 
sensitivity and true negative rate (TNR) for specificity, as described in 
equations (Kass et al., 2018)- (Bokde et al., 2009), where S represents 
the subset of events in which a postsynaptic spike occurs (sp = 1) and N 
represents the subset of events in which there is not a postsynaptic spike: 

TPR = 1 −
1
|S|

∑

k∈S
sk − ŝk,TNR = 1 −

1
|N|

∑

k∈N
ŝk − sk (8 -9)  

2.5. Leaky integrate-and-fire network 

A LIF network model was implemented to evaluate performance with 
physiologically relevant bursting spike patterns. Eq (Humphries et al., 
2018). describes the membrane potential (Vm) for a given neuron at time 
t+Δt as a function of resting potential (Ve = − 75mV), membrane 
current (Im), membrane resistance (Rm = 10MΩ), and membrane 
capacitance (Cm = 100pF), where time constant τm = Cm × Rm = 1ms: 

Vm(t+Δt) = Vm(t) +Δt⋅
− ( Vm(t)–Ve ) + Im⋅Rm

τm
(10) 

Eq (Viventi et al., 2011). defines membrane current as a weighted 
sum of presynaptic spikes normalized by the postsynaptic current (Ipost =

1nA). 

Im = Ipost

∑

i
wi⋅spikei (11) 

For times t where the membrane voltage was greater than the 
threshold voltage (Vth = − 65mV), an action potential occurred, and 
membrane voltage was set to 15mV. For subsequent t + Δt, neurons 
hyperpolarized to the reset potential Vreset = − 80mV. 

A LIF-based three-layer network was built with a first layer (L1) 
consisting of spike trains generated using Eqs. (1)–(2) at temporal step of 
0.2 ms. Resting L1 firing rate was set to 5 Hz, with five 150 Hz bursts, 
lasting up to 12 ms, injected asynchronously into each second of data. 
200 unique L1 neurons were fed into the LIF model to produce voltage 
traces for each layer 2 (L2) neuron. This process was repeated for 200 L2 
neurons acting as presynaptic inputs to layer 3 (L3) to generate leaky 
postsynaptic data. Layer 2 data was temporally compressed to 1 ms 
resolution and methods from Section 2.1 were repeated to produce 
simple integrate-and-fire L3 trains. By bounding learned weights be-
tween (− 8 8) (mV), four variations of L3 scenarios were tested; un-
bounded integrate-and-fire (UIF), unbounded LIF (ULIF), bounded 
integrate-and-fire (BIF) and bounded LIF (BLIF). Each network was 
tested for different fractions of neurons recorded within the network to 
test performance in common experimental scenarios with limited 
accessibility (20%, 50%, 80%, 85%, 90% and 95%). In all cases, the 
same L1 data were used to produce and learn on 5000 s of L3 data. 

2.6. Microelectrode array recordings 

Harvard Biosciences transparent MEAs (60MEA100/10iR-ITO-gr) 
were selected for experimental recordings and covered with 50 μL drops 
of 0.1 mg/mL polyethyleneimine (408727–100 mL, Sigma-Aldrich) 
with 4 μg/mL laminin (23017–015, Thermo Fisher Scientific). Rat 
cortical neurons (Gibco, 1e6 cells/mL, lot number: 2214638, catalog 
number: A1084001) were cultured as described previously (Bricault 
et al., 2020). Cultured cell volumes of 50 μL (1⋅106 cells/mL) were 

plated on the active sites of sterilized MEAs in Thermo Fisher plating 
media (Neurobasal Plus + 1x GlutaMAX™ + 10% fetal bovine serum) 
and maintained in growth media without serum four hours after plating. 
Subsequent media changes (aspirate 480 μL and add 640 μL) occurred 
every 2–3 days. MEAs signals indicated cellular activity starting at DIV 
14 and were recorded between DIV 18 and DIV 22. The recording was 
performed using an MZ60 MEA interface at ~6104 Hz with 32 channels, 
streaming through a PZ5 neurodigitizer amplifier to an RZ5P base pro-
cessor (Tucker-Davis Technologies, Alachua, FL). Recordings for each 
dataset were collected in 900 s intervals with a 60 s stimulation epoch at 
the start of each recording. 

2.7. Experimental data analysis 

Raw data files were loaded into MATLAB R2021a using a custom 
TDT software development kit and were subsequently postprocessed to 
represent 1 ms resolution binary data to maintain experimental pa-
rameters equivalent to in silico spike train data. Correlations were 
determined for all MEA channel pairs with all electrodes iteratively 
designated as the single ‘postsynaptic’ cell, such that a subsequent 
30 × 30 matrix with values between [− 1 1] represented the correlation 
of all presynaptic to postsynaptic connections. A baseline for spike 
prediction was established by defining correlations greater than or equal 
to 10− 4 as excitatory connections. Excitatory weights were uniformly 
randomized between (0 8) (mV) and normalized by the strongest cor-
relation. Unlearned weights for inhibitory correlations, in which 
maximum value did not meet the threshold, were randomized between 
(− 8 0) (mV) and normalized to the strongest inhibitory (minimum) 
coefficient. A second set of weights were initialized using a time-shifting 
approach to align channel activity. Here, correlation for each pre- and 
postsynaptic pair was found for intervals of [− 5 5] ms presynaptic lag 
with the maximum correlation determining the time shift. Excitatory 
designations were given to correlations of at least 10− 4 and respective 
weights were initialized as described above. For correlations below the 
threshold, minimum coefficients were used to determine lag and 
initialize normalized weights between (− 8 0). The iterative learning was 
repeated for this time-shifted data. Learned weights from in vitro re-
cordings were unbounded. 

Performance was quantified by testing binary spike prediction on the 
same recording dataset. True positive rate and true negative rate were 
calculated for all 30 ‘postsynaptic’ electrodes using zero-lag and time- 
aligned learned weights after 100 iterations, as well as for their 
respective unlearned weights. To better analyze binary classification 
given uneven positive and negative event distribution, Matthews Cor-
relation Coefficient (MCC), as defined in Eq (Jun et al., 2017)., was also 
found. Here, true negative (TN), true positive (TP), false negative (FN), 
and false positive (FN) represent the dimensionless metrics within a 
confusion matrix. 

MCC =
TN ∗ TP − FN ∗ FP

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (12)  

2.8. Computational cost analysis 

Run times for both IF and LIF networks were analyzed during 100 
iterations with a single learning rate (η = 1⋅10− 4) on all five bin sizes. 
The total computational times for an IF network with 2500 s of data 
(intervals of 1000 ms) over 100 iterations were 1.24⋅103 s, 1.36⋅103 s, 
1.17⋅103 s, 1.16⋅103 s, and 1.26 ⋅103 s, in order of ascending bin size. The 
mean elapsed time for each interval was 12.42 ± 0.33 s, 13.62 ± 0.15 s, 
11.68 ± 0.19 s, 11.62 ± 0.47 s, and 12.62 ± 0.76 s, respectively. The 
total elapsed times for the LIF network, in order of ascending bin size, 
were 1.25⋅103 s, 1.44⋅103 s, 1.22⋅103 s, 1.16⋅103 s, and 1.20 ⋅103 s, with 
respective iteration means of 12.55 ± 0.39 s, 14.43 ± 1.04 s, 12.16 

± 0.33 s, 11.61 ± 0.30 s, and 12.03 ± 0.16 s. Timing studies were 
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conducted in Matlab R2021a using a 3.8 GHz Intel Core i7–9800X 
Processor with 64 GB RAM. Parallelization was not implemented for this 
study. 

3. Results 

3.1. Baseline weight inference with increasing presynaptic bin size 

The ability of the adapted perceptron to reconstruct synaptic weights 
with training sets of varying levels of presynaptic temporal detail is 
demonstrated in Fig. 1 and Fig. 2. An example network (Fig. 1) was 
reconstructed based on spike data with increasing temporal bin sizes 
(Fig. 1d-h, bin sizes: 1, 5, 20, 100 and 200 ms, respectively). We quan-
tified reconstruction accuracy by calculating the minimal RMSE of 
inferred weights for different bin sizes and learning rates tested (Fig. 1i). 
Fig. 2 shows iterative prediction accuracy for multiple networks (n = 10, 
1–100 iterations). The average RMSE over all datasets and RRCs reached 
minimal values of 6.93⋅10− 3 ± 3.02⋅10− 4, 0.28 ± 0.02, 0.59 ± 0.03, 
1.30 ± 0.04, 1.92 ± 0.09, in order of ascending bin size (Fig. 2f) with 
respective Pearson correlations of r = 1.00, 1.00, 0.98, 0.92 and 0.85, 
each (p ~ 0), demonstrating that the ability to reconstruct presynaptic 
weights diminishes with decreased temporal resolution. For small bin 
sizes (b ≤ 20 ms, Fig. 2a-c) learning converged to maximal performance 
with fewer iterations at high learning rates. For large bin sizes (b ≥

100 ms, Fig. 2d-e) high learning rates failed to converge weight pre-
dictions. However, we found that with smaller learning rates, perfor-
mance was improved: RMSE at η = 1⋅10− 2 was 3.69⋅102 ± 81.1 
(r = 0.39, p ~ 0) and 8.17⋅102 ± 27.0 (r = 0.71, p ~ 0) for bin sizes of 
100 and 200 ms, and 4.44 ± 0.63 (r = 0.39, p ~ 0) and 8.90 ± 1.15 
(r = 0.59, p ~ 0) at η = 1⋅10− 3, respectively. Performances for smaller 
learning rates and large bin sizes were not asymptotic at maximum 
number of iterations tested (100), indicating improved optimum can be 
reached with higher number of iterations at the expense of algorithm 
runtime. 

3.2. Firing rate dependence of weight inference 

To find conditions for improved connectivity reconstruction, we 
turned to comparing firing rate dependent performance for low and high 
temporal resolution data encompassing both low and high firing rates 
corresponding to baseline and stimulated activity, respectively (Fig. 3). 
For the lowest temporal bin size tested (200 ms) with mean presynaptic 
firing rates of 5, 10, 40, and 80 Hz, (Fig. 3a-d), we found minimal 
average RMSE values of 5.50 ± 0.20 (r = 0.24, p ~ 0), 4.50 ± 0.16 
(r = 0.54, p ~ 0), 0.64 ± 0.05 (r = 0.98, p ~ 0), and 0.38 ± 0.02 
(r = 0.99, p ~ 0), respectively. Lower firing rates (5 Hz and 10 Hz, 
Fig. 3a-b) exhibited reduced performance instability compared with 
higher firing rates (40 Hz and 80 Hz, Fig. 3c-d), but low quantity of 

Fig. 2. Learning-rate-dependent iterative performance for temporally constrained presynaptic inputs. (a-e) Iterative performance of the adapted perceptron. Each 
panel depicts the performance of the learning rates used in this study for a particular bin size, ordered by bin sizes of 1 ms, 5 ms, 20 ms, 100 ms and 200 ms, 
respectively. (f) Collective RMSE for n = 10 datasets. The average RMSE of these datasets is represented by the darker shade. Mean firing rate was 20 spikes/sec. 
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information for small number of spikes predictably prevented proper 
convergence of learned weights to true weights (Fig. 3e-f). For higher 
firing rates, we found greater performance variability and instability, 
but optimal learning rates utilized the availability of data properly, 
displaying convergence between learned and true weights (Fig. 3g-h). 
The mean RMSE for the 200 ms, 5 Hz RRC ranged between 5.50 and 
22.8 (Fig. 3i). Comparatively, the respective range for the 80 Hz case 
ranged between 0.38 and 39.8 (Fig. 3l). Based on these and all other 
RRCs tested (Fig. 3i-l), we obtained a generalized map that defines the 
optimal learning rate for a given temporal bin size and presynaptic firing 
rate (Fig. 3m). 

3.3. Single-spikes Predictions 

Based on our recipe, we quantified the ability to properly predict 
activity at the single-spike level (Fig. 4). Fig. 4a introduces subsets of 
predicted spike trains based on weights learned from networks firing at 
20 Hz at multiple temporal bin sizes. Predictably, TPR indicated high 
sensitivity of the algorithm to single-spike predictions for high temporal 
resolution data that deteriorated as resolution decreased. Mean TPR 
values were 99.85 ± 0.02%, 95.52 ± 0.21%, 90.65 ± 0.40%, 78.64 
± 0.95% and 70.76% ± 1.36%, in order of ascending bin size (Fig. 4b). 
Specificity of the algorithm persisted as temporal resolution decreased, 

with mean TNR values of > 99.99 ± 3.40⋅10− 4%, 99.91 ± 4.73⋅10− 3%, 
99.80 ± 0.01%, 99.56 ± 0.01% and 99.38 ± 0.03% (Fig. 4c). For other 
presynaptic firing rates (Fig. 4d), networks with mean spike rate of 
40 Hz provided the highest average prediction of true positives in a 
200 ms environment, with 13.98 ± 1.85%, 34.81 ± 1.73%, 90.86 
± 0.87% and 80.62 ± 3.68% mean TPR for 5, 10, 40 and 80 Hz, 
respectively (Fig. 4e). The algorithm remains highly specific under these 
test conditions, as demonstrated by the respective false positive rates of 
98.79 ± 0.16%, 99.35 ± 0.05%, 99.61 ± 0.05% and 99.92 ± 0.02% 
(Fig. 4f). 

3.4. Physiologically relevant Model 

Experimentally recorded neuronal activity displays bursting spiking 
patterns at lognormal firing distributions, and usually provides access to 
only a fraction of a given network circuit (Buzsáki and Mizuseki, 2014). 
To test performance in physiologically relevant scenarios we imple-
mented a network of LIF neuronal models displaying bursting spiking 
patterns and tested the ability to reconstruct connectivity with variable 
degrees of accessibility to presynaptic data and temporal resolution 
(Fig. 5). Stimulation applied through the first layer (L1) manifested in 
biologically relevant firing bursts at frequencies ranging between 5.83 
and 26.96 Hz (µ = 16.98, σ = 3.57) in L2 neurons (Fig. 5a). Further, we 

Fig. 3. Effect of Presynaptic Firing Rate on Performance of Adapted Perceptron (a-d) Iterative trends on spike redistribution performance for varying presynaptic 
firing rates during rest (<10 Hz) and stimulated (> 10 Hz) states. Each panel represents the performance of learning rates as a mean and standard deviation (n = 10) 
of datasets under 200 ms temporal resolution condition. (e-h) Comparisons of learned weights against true weights for 200 ms time bins. Each panel represents a 
sample dataset, selected from the learning rate that provides the lowest average RMSE, as shown in panels i-l. (i-l) Collective RMSE for multiple networks (n = 10) for 
differing presynaptic firing rates, bin sizes, and learning rates, with the average represented by the darker shade. (m) A single map was generated to provide optimal 
learning rates for each RRC. 
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tested performance with learned weights bounded to a physiological 
range of [− 8 8] (mV). Performance in unbounded integrate-and-fire 
(UIF), bounded integrate-and-fire (BIF), unbounded leaky 
integrate-and-fire (ULIF) and bounded leaky integrate-and-fire (BLIF) 
configurations was analyzed by determining the RMSE for inferring 
weights of L2 neurons presynaptic to L3. RMSE values for varying de-
grees of temporal resolution and accessibility to L2 activity data were 
determined for the respective subset of L2 neurons analyzed (Fig. 5b-e). 

For 1 ms temporal resolution UIF, optimal learning rates of 5⋅10− 4, 
5⋅10− 3, and 5⋅10− 5 achieved minimum RMSE values of 2.72, 1.09 and 
3.31 for 20%, 50% and 100% of the network accessible to the algorithm, 
respectively. When introducing very low temporal resolution (200 ms 
bin), respective performance values predictably degraded by 13.6 - 
62.5% to RMSE values of 5.24, 2.96 and 4.34 with optimal learning rates 
of 5⋅10− 5, 1⋅10− 3 and 5⋅10− 4. In ULIF cases representing a multilayer LIF 
network with unbounded synaptic weights (Fig. 5d), RMSE degraded 
with larger time bins for 20% and 100% of spike data accessible to the 
algorithm (from 4.04 to 4.89 and 3.84 to 4.02, for 1 ms and 200 ms, 
respectively) but improved for the 50% case (from 2.91 to 2.40). In 
addition, 200 ms bins also showed improvement from UIF to ULIF (7.3 - 
23.1%). This suggests that low temporal resolution data may be favored 
for predicting connectivity in LIF models due to jittery presynaptic input 
contributing to spike generation compared with naive memoryless 
feedforward networks (Maršálek et al., 1997). Moreover, having access 
to only a limited fraction of network data can result in higher perfor-
mance in some cases and with the number of iterations and configura-
tion tested. 

Bounding synaptic weights to physiological values showed a pre-
dictable decrease in performance for all cases with small time bins and 
varying degrees of performance change for large bins compared with 
unbounded cases (Figs. 5c and e). For BLIF (Figs. 5e), 1 ms bins yielded 
RMSE values of 4.23, 2.98 and 3.70 for 20%, 50% and 100% of the 
network accessible to the algorithm while increasing bin size to 200 ms 

had varying effect on performance with a large reduction for 20% 
(28.2%, RMSE = 5.89), moderate improvement for 50% (17.1%, RMSE 
= 2.54) and minimal change for 100% (2.76%, RMSE = 3.81). Overall, 
the ability of our method to reconstruct connectivity of bursting LIF 
networks is less predictable compared with simple IF networks and 
heavily depends on a combination of temporal resolution and the 
network coverage, demonstrating the necessity for choosing optimal 
learning parameters to infer weights from a proper subset of presynaptic 
inputs (Fig. 5f). For small bin sizes, relatively low learning rates are 
predictably sufficient for optimal weight inference (Fig. 5f, left side of 
map). This corresponds to the ability of the algorithm to make small 
corrections to weight values during each iteration and steadily improve 
inference before converging to optimal values, even for limited access to 
network activity. Further, we demonstrate that higher learning rates are 
more suitable for medium bin sizes when access to the network activity 
data is sufficiently high (Fig. 5f, upper middle portion of map). In 
contrast, for very large bin sizes (e.g. 200 ms bins) the algorithm per-
forms better with lower rates (Fig. 5f, lower right size of map) corre-
lating with higher learning stability (Fig. 4c-d). It is expected that longer 
training across more iterations or with larger datasets will more 
consistently increase performance with lower learning rates, assuming a 
fraction of neurons are observed above a threshold, as demonstrated 
previously (Soudry, Oct et al., 2015). 

3.5. Experimental data spike prediction 

Cortical rat neurons cultured over a 32-channel microelectrode array 
provided the basis for the in vitro (n = 30) spike prediction study 
(Fig. 6a). Prediction was assessed using standard binary classifier per-
formance metrics, primarily true positive rate (TPR), true negative rate 
(TNR), and Matthews correlation coefficient (MCC) (Figs. 6b and c). For 
each ‘postsynaptic’ channel and bin size pair, the learning rate which 
achieved the highest TPR was used for analysis. TPR, FPR and MCC 

Fig. 4. Postsynaptic Spike Prediction from Learned Presynaptic Weights. (a) 10 s of spike prediction is shown for a network firing at 20 Hz. From top to bottom are 
the true postsynaptic spikes, followed by the predicted spikes for 1 ms, 5 ms, 20 ms, 100 ms and 200 ms time bins, respectively. Grey spikes indicate correct pre-
dictions, while red and cyan represent failed predictions and false positives, respectively. (b) Average (n = 10) percentage of correct predictions for each 20 Hz time 
bin. (c) Performance against false positives for each 20 Hz time bin, represented as the average (n = 10) percentage of correctly predicted non-spike events. (d) 
Representation of 200 ms resolution spike prediction for presynaptic firing rate, with each subsequent two rows demonstrating true spikes and predicted spikes, 
respectively, for the firing rate. (e) Average (n = 10) percentage of correct predictions for differing presynaptic firing rates and 200 ms time bins. (f) Performance 
against false positives for differing presynaptic firing rates and 200 ms time bins, represented as the average (n = 10) percentage of correctly predicted non- 
spike events. 
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values of 0 or unbounded were excluded. With random weights 
normalized to correlation between channels, no postsynaptic activity 
(TP = 0; FP = 0) was predicted in all experimental cases, which can 
likely be attributed to the randomization of weights prior to normal-
izing. For learned weights, spike prediction improved markedly in both 
non-shifted cases and time-aligned studies. TPR for 1 ms bins increased 
to a mean of 2.58% (SE = 1.26%, n = 18) without a shift and 4.28% (SE 
= 1.30%, n = 20) when aligned. Respective mean FPR values were 

4.67⋅10− 2% (SE = 1.30⋅10− 2%, n = 18) and 5.70⋅10− 2% (SE =

1.77⋅10− 2%, n = 20). Net performance increase is indicated by MCC 
values, with respective coefficients of 8.44⋅10− 2 (SE = 1.90⋅10− 2, 
n = 18) and 1.24⋅10− 1 (SE = 1.86⋅10− 2, n = 20). Classification was best 
for 200 ms bins, with unaligned mean TPR and FPR values of 4.57% (SE 
= 1.21%, n = 19) and 3.87⋅10− 2% (SE = 1.70⋅10− 1%, n = 19) and an 
associated MCC value of 1.16⋅10− 1 (SE = 1.97⋅10− 2, n = 19). When 
time-aligned, these respective values were 6.83% (SE = 1.52%, n = 23), 

Fig. 5. Reconstructing connectivity from firing rates of bursting network subpopulations (a) Demonstration of layer 2 (L2) bursting behavior resulting from 
superimposed layer 1 (L1) spike trains and corresponding layer 3 (L3) voltage trace. L2 neurons shown have strong excitatory and inhibitory connections to L3 
neuron (excitatory - left; inhibitory - right). (b-e) RMSE results for UIF, BIF, ULIF and BLIF under varying L2 accessibility conditions. (f) A map is provided for 
determining optimal learning rates for given accessibility and bin size under BLIF conditions. 
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2.97⋅10− 1% (SE = 1.36⋅10− 1%, n = 23), and 1.56⋅10− 1 (SE = 2.02⋅10− 2, 
n = 23). This data demonstrates the efficacy of this blurred extraction 
approach in biological neural networks. 

4. Discussion 

This study delineates a recipe for inferring neural connectivity from 
temporally subsampled synaptic data and provides a framework for 
adoption in more involved experiments. By adapting a single-layer 
perceptron to varying orders of low temporal resolution, we demon-
strate empirically optimized reconstruction of feedforward presynaptic 
connections with parameterized model conditions. Furthermore, we 
show that properly inferred connections can predict network activity at 
the single-spike level with relatively high precision, even with limited 
access to the network. The results of this study approach the under- 
addressed problem of reverse engineering neuronal network activity 
from the physically limited temporal dynamics of various sensing 
modalities. 

Our protocol prescribes optimal parameters to decode connectivity 
of networks receiving low sampling rate signals with no assumptions 
made to spiking patterns within a given time bin. We test this general-
ized method on networks displaying physiological spike bursting pat-
terns and find optimized learning rates and bin sizes for reconstructing 
presynaptic weights, with results comparable to existing methods. For 
example, we test prediction of synaptic connections using standard 
receiver operating curve (ROC) analysis and extrapolate true positive 
rates for a constant false positive rate of 0.01 across all bin sizes. For a 
bin size of 20 ms, where performance is degraded in transfer entropy 
methods (Ito et al., 2011), our model achieves a maximal TPR of 0.36 for 
the BLIF network. This performance persists with larger bin sizes as well, 
whereby 200 ms bins achieve a maximum TPR of 0.38. For these same 
cases, the optimal pairs of values (FPR, TPR) are (0.31, 0.78) and (0.10, 
0.68), respectively, which closely resemble connectivity for discrete 
data in previous studies (Kobayashi et al., 2019). When a fraction (20%) 
of the network is observed, the area under the curve (AUC) for excitatory 
connections remains significant, with 200 ms bins providing a 
maximum AUC of 1.00, a metric which outperforms previous studies 
(Soudry et al., 2015) but at the cost of lower performance for classifying 
inhibitory connections. Future adaptations can be tailored to train over 
specialized spiking patterns (Leinekugel et al., 2002), including spikes 

phase locked to sensory stimulus (Nelken, 2004), network oscillations, 
and log-normal spiking behavior generally seen in the brain (Buzsáki 
and Mizuseki, 2014) which is expected to also improve classification of 
inhibitory connections. By redistributing single spikes within a given 
temporal bin during learning iterations, our perceptron variant can 
optimize performance preferentially to neural activity of a specific 
persuasion and can potentially achieve more accurate connectivity maps 
and single-spike predictions with biological data as input. Assumptions 
on spiking behavior can be integrated with approaches shown to suc-
cessfully reconstruct undersampled networks with only sparse datasets 
observable from subpopulations of the network (Soudry et al., 2015), 
and can in turn allow for processing of larger networks and datasets 
commonly reconstructed using generalized linear models that overcome 
computationally exhaustive data processing (Kobayashi et al., 2019; 
Zaytsev et al., 2015). Other relevant postprocessing tools used to 
deconvolve calcium readouts, EEG signals and similar temporally 
limited readouts into time-resolved action potentials (Wei et al., 2021; 
Yaksi and Friedrich, 2006; Soudry, Oct et al., 2015; Hagen et al., 2018) 
can also improve the ability to decipher connectivity by serving as 
precursors for upgrading the input data prior to learning of weights. 
Additionally, single-neuron calcium spikes and similar biophysical 
events have specialized nonlinear features that are leveraged by 
deconvolution methods to decode underlying voltage spikes by super-
vised learning of large amounts of data (Yaksi and Friedrich, 2006; 
Rupprecht et al., 2021). Future variations of the method presented here 
will mimic specific signal properties relevant to biophysical processes 
and train over less naïve presynaptic input and signal shapes, as well as 
use leaky integrate and fire neurons more suitable for recreating tonic 
firing and bursting network activity (Mihalaş and Niebur, 2009; Ganguly 
and Chakrabarti, 2019). 

Comprehensive reconstruction of mammalian cortical and subcor-
tical microcircuitry uses ultrastructural, morphological, functional and 
computational analyses to reveal diverse connectivity that can reenact 
brain states in silico (Markram et al., 2015). Here, we presented a 
proof-of-concept study for naive, linear feedforward networks with 
uniform distribution of presynaptic connectivity and tested this 
approach on microelectrode array recordings of an in vitro network of 
primary rat cortical neurons. Processing of diverse biological datasets to 
explain realistic networks will rely on analogous modifications to more 
comprehensive connectivity approaches, such as widely used 

Fig. 6. Predicting in vitro spike activity from microelectrode array recordings (a) Filtered MEA recording from representative channels, with 1 ms binary repre-
sentations and associated ‘binning’ within 20 ms bins (b) True positive and true negative rates of prediction for spike trains with variable time-alignment conditions 
and binning parameters (c) Matthews correlation coefficient demonstrating improved binary classification over unlearned conditions. 
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generalized linear models (GLM) (Kobayashi et al., 2019; Baker et al., 
2020), and applying these adaptations to recurrent neuronal circuits 
with interconnected hubs and heterogeneous weight distributions 
comprising both unidirectional and reciprocal connections (Markram 
et al., 2015; Hay and Segev, 2015; Song et al., 2005). Furthermore, re-
cordings occurring at time scales involving both short-term and 
long-term plastic processes related to learning and memory will require 
dynamic assignment of weights. In order to account for these and other 
nonlinear functional and topological network traits, dynamically 
responsive approaches where learning rates are not held constant during 
iterative training are expected to allow for improved performance 
(Takase et al., 2018). Our training sets correspond to neurobiological 
context, with millisecond timescales, all-or-nothing membrane potential 
fluctuations frequencies, and typical synaptic strength, but can be used 
more broadly for reverse engineering functional biological networks 
limited by temporally constrained readouts. 
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