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A B S T R A C T

Background: Temporal interference (TI) stimulation is a novel non-invasive brain stimulation approach that 
promises selective targeting of deep brain structures while minimizing off-target cortical stimulation. Despite a 
growing interest in TI applications, there is a need for integrated computational tools that seamlessly connect 
neuroimaging data preprocessing through montage optimization, field simulation, and analysis within a unified 
framework designed for translational and clinical research.
Methods: We developed TI-Toolbox, an open-source software platform that integrates established neuroimaging 
tools (dcm2niix, SimNIBS, FreeSurfer) with specialized algorithms for TI research. The platform provides end-to- 
end workflows encompassing structural MRI preprocessing, volume conduction modeling, montage optimization, 
electric field simulation, and region-of-interest analysis. Both graphical user interface and command-line inter
face implementations ensure accessibility across user expertise levels. The platform employs containerized 
deployment via Docker to ensure reproducibility and cross-platform compatibility.
Results: TI-Toolbox successfully automates the complete TI research pipeline, from DICOM conversion through 
final field analysis. The platform demonstrates robust performance across operating systems and provides 
standardized workflows that enhance reproducibility. Furthermore, our case studies support the validity of our 
HD-EEG mapping approach for montage standardization and the need for individualized modeling for exposure 
assessment.
Conclusions: TI-Toolbox addresses critical infrastructure gaps in TI research by providing researchers with a 
unified, validated platform that reduces technical barriers and accelerates translational research in non-invasive 
deep brain stimulation.

1. Introduction

Temporal interference (TI) stimulation has emerged as a promising 
technique for non-invasive neuromodulation, offering better stimulation 
focality when targeting deep brain structures compared to traditional 
transcranial electrical stimulation (tES) modalities [1]. Unlike conven
tional tES methods that predominantly affect superficial cortical re
gions, TI employs kilohertz-frequency carriers through multiple 

electrode pairs with a physiologically relevant offset frequency to create 
focal stimulation at depth (e.g. 2.0 kHz and 2.01 kHz) (Fig. 1) [2].

While early hypotheses proposed that neurons would only respond to 
the beat frequency due to their intrinsic low pass filtering, recent evi
dence suggests that neurons are affected by kilohertz-frequency stimu
lation through direct membrane polarization, with stimulation 
thresholds increasing with frequency [3–5]. Though there is not yet an 
established mechanistic explanation, the neural response to TI likely 
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involves a non-linear process [6,7]. Recent reviews provide compre
hensive listings of emerging TI studies [8–10] with preclinical studies 
demonstrating successful modulation of hippocampal activity and motor 
cortex functions [11,12] while human studies report effects on 
improvement of working memory, reduction of epileptic biomarkers, 
and enhancement of slow wave activity during sleep [5,13,14].

While researchers are actively working to decipher the neural 
mechanisms of TI at the microscopic level, modulation of the central 
nervous system critically depends on the electric field strength and likely 
its orientation relative to the neural tissue in line with more traditional 
tES interventions [15,16]. Therefore, knowing the electric field expo
sure is essential for planning rigorous clinical studies. Some studies take 
advantage of depth electrodes for cohorts that have surgical implants, 
which allows field distribution to be assessed directly and tuned towards 
the desired target [5,17]. However, in most human studies, participants 
do not have implanted electrodes, making it impossible to directly 
measure the brain's exposure to TI stimulation.

To address this challenge, in-silico simulations offer a powerful, non- 
invasive solution which enables researchers to estimate field exposure 
across the entire head with high spatial resolution, under controlled and 
reproducible conditions [18]. These simulations are well-suited for 
conducting experimental manipulations, optimizing stimulation pro
tocols, and minimizing possible risk to participants [19,20]. Several TI 
tools exist, including commercial solutions [21–24] and open-source 
alternatives [25–27]. In practice, however, existing solutions remain 
fragmented, often requiring researchers to assemble custom pipelines, or 
proving inaccessible due to steep learning curves or high licensing costs 
[8]. This fragmentation poses significant challenges for establishing 
standardized workflows and hinders the broader clinical application of 
in-silico TI modeling.

Here, we introduce TI-Toolbox, an open-source platform that offers a 
comprehensive, integrated, end-to-end solution designed to tackle the 
key challenges in clinical TI research. The platform combines estab
lished neuroimaging tools within a unified framework specifically 
designed for TI applications, offering automated workflows from raw 
magnetic resonance imaging (MRI) data through optimized stimulation 
protocols and detailed field analysis (Fig. 2). TI-Toolbox aims to 

promote access to advanced TI modeling by unifying preprocessing, 
optimization, simulation, analysis and visualization within a single 
framework that promotes computational ease of use, reproducibility, 
and methodological standardization across the research community.

Using TI-Toolbox, we sought to answer multiple concerns that the 
field has been debating: (Q1) Does mapping optimal montages obtained 
through unconstrained genetic optimization onto standard high-density 
EEG (HD-EEG) nets alter electric field characteristics [28,29]? (Q2) Does 
a personalized model for montage optimization provide a meaningful 
advantage over using a montage derived from a generalized model [30]? 
(Q3) Can demographic or anatomical factors explain inter-individual 
variability in TI exposure? To answer these questions, we evaluated 
three ROIs: the left insula, the right hippocampus, and a spherical ROI 
centered at MNI coordinates (36.10, 14.14, 0.33) with radius 5 mm, 
while assessing the intensity, direction, and focality of the maximal 
modulation vector field. Understanding the appropriateness of electrode 
placement discretization via EEG nets and the usage of generic head 
models for montage optimization has the potential to improve clinical 
trial design and support reproducibility.

2. Methods

2.1. Overview

The TI-Toolbox is organized into four main components: pre
processing, optimization, simulation, and analysis (Fig. 2). The modules 
are designed to operate in a linear sequence, with standardized data 
structures and outputs enabling reproducibility across stages. The pre
processing module generates subject-specific head models from raw MRI 
data via automated DICOM conversion, surface reconstruction, and 
finite element meshing. The optimization module determines effective 
electrode montages fitted to the subject anatomy and a stimulation 
objective, supporting both genetic and exhaustive algorithms. The 
simulation module computes subject-specific electric fields and TI en
velopes, with support for directional field components, multi-polar TI, 
and customizable electrode montages. The analysis module extracts 
region-wise metrics and generates visualizations through either surface 

Fig. 1. Temporal and spatial characteristics of temporal interference (TI) field distribution. A. Central brain region showing maximal modulation amplitude where TI 
envelope (Δf) dominates over high-frequency (HF) carrier components (HF1,HF2). B. Superficial cortical area demonstrating minimal modulation with dominant HF2 carrier 
activity. C. Three-dimensional head model illustrating electrode montage with HF1 (carrier frequency; red), HF2 (carrier frequency + Δf; blue), and the calculated TImax vectors 
(green). Vector fields reflect the electric-field magnitude and direction at each gray-matter surface element, obtained by averaging the field contributions from the three nodes 
defining each triangular facet.
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(mesh) or volumetric (voxel) evaluation pipelines, with outputs view
able in Gmsh [31] (mesh) and Freeview [32] (voxel), and with optional 
cohort-level exports in MNI space.

Each component is accessible through both a command line interface 
(CLI) and a PyQt5-based graphical user interface (GUI) [33,34]. 
Containerization via Docker [35] ensures reproducibility [36] and 
simple orchestration of external dependencies across operating systems 
(Fig. 3).

2.2. Prerequisites

To utilize TI-Toolbox, users must provide anatomical MRI data in 
DICOM format, with at least a T1-weighted sequence required for 
structural processing. The inclusion of T2-weighted images is recom
mended to improve tissue segmentation accuracy, and diffusion- 
weighted imaging (DWI) data may be supplied for the computation of 
directional conductivity tensors for running anisotropic simulations.

The platform is compatible with Windows, Linux, and macOS oper
ating systems via Docker-based containers running Ubuntu. Docker (or 
Docker Desktop) is the only required local installation; all other de
pendencies are encapsulated within the containerized environment.

Access to the graphical user interface requires X11 forwarding across 
all operating systems. For standard usage, a minimum of 32 GB RAM is 
recommended. Installation instructions and a detailed usage guide are 
available in the project's website [37].

Once prerequisites are installed, the correct Brain Imaging Data 
Structure (BIDS) formatting should be provided for the rest of the tools 
to work properly. Specifically, the user needs to set up their sourcedata 

sub-directory with either raw DICOMs or NIfTI files. The rest of the 
required files are generated automatically as the user moves through the 
TI-Toolbox (Fig. 3B). To facilitate immediate use and learning, TI- 
Toolbox natively ships with the Ernie's T1-weighted and T2-weighted 
scans from previous work [27] and MNI152 data [38].

2.3. Core components and implementation

2.3.1. Preprocessing pipeline
The preprocessing module orchestrates a workflow that transforms 

raw MRI data into simulation-ready head models through three primary 
stages: DICOM conversion, cortical reconstruction, and finite element 
method (FEM) model creation.

DICOM to NIfTI conversion is performed using dcm2niix [39], which 
consolidates DICOM series into volumetric images. This process pro
duces outputs compliant with the BIDS for compatibility with down
stream workflows.

Structural processing leverages FreeSurfer's recon-all pipeline [32] 
through the recon-all function, which performs cortical reconstruction 
including tissue segmentation, surface extraction, and automatic par
cellation using standard atlases. The implementation supports both se
rial and parallel execution modes, with the parallel mode utilizing GNU 
Parallel [40] for efficient multi-subject processing.

Head model generation employs SimNIBS's charm function [41] for 
creating detailed FEM models. When both T1 and T2 images are avail
able, charm utilizes multi-modal information for improved tissue seg
mentation accuracy. As part of the charm command, multiple 10–20 and 
high-density electroencephalogram (HD-EEG) nets are co-registered 

Fig. 2. TI-Toolbox integrated computational pipeline. A. Preprocessing module: DICOM-to-NIfTI conversion via dcm2niix, FreeSurfer recon-all cortical reconstruction, and 
SimNIBS's charm for finite element method (FEM) head model generation. B. Optimization algorithms: flex-search genetic algorithm and exhaustive search approaches for 
electrode montage determination with region-of-interest (ROI) targeting. C. Simulation engine: magnitude and direction computation of TImax. D. Analysis and visualization: 
ROI extraction, and mesh/volumetric output generation compatible with Gmsh and Freeview.
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with the head model via non-linear transformation from Montreal 
Neurological Institute (MNI) to subject space (Fig. 2A and S9). All steps 
incorporate comprehensive error handling, generate timestamped logs, 
and sharable HTML reports (section 2.4).

Following FEM model creation, a dedicated tissue analysis script 
estimates cortical bone morphology, ventricular and subarachnoid ce
rebrospinal fluid (CSF), and skin characteristics, producing subject-level 
metrics (Fig. 8A and B). These metrics are exported alongside pre
processing reports and can serve as covariates for downstream inter- 
individual variability analyses (Section 2.6.4).

2.3.2. Optimization algorithms
The optimization module implements two complementary ap

proaches addressing the unique challenges of multi-electrode, multi- 
objective optimization in TI stimulation:

Flex-Search Algorithm: Built upon SimNIBS's TesFlexOptimization 
class [42], this module implements a leadfield free adaptive genetic 
algorithm. Flex-Search iteratively evolves electrode montages by simu
lating montages, evaluating the resulting electric field in a specified ROI 
based on a user-defined goal, and mutating to improve solutions over 

generations. The flex-search allows for easy and intuitive configuration 
of optimization parameters including goal selection (mean field, 
maximum field, or focality), post-processing options (TImax, dir_TInormal, 
or dir_TItangential), and electrode dimensions. For focality optimization, 
the algorithm seeks to maximize field intensity within the target region 
while minimizing field spread in a region defined as non-ROI. This is 
achieved by setting thresholds in which the ROI should exceed, and 
non-ROI should be kept below. This approach promotes spatial selec
tivity by explicitly penalizing widespread field distributions, making 
threshold selection a critical parameter that determines which brain 
regions are considered activated during optimization (Fig. S3). To 
mitigate local optima, the tool supports a multi-start strategy in which 
the optimizer is launched multiple times with distinct seeds; users can 
specify the number of runs and automatically retain the best montage 
across starts. While the multi-start approach consistently improves tar
geting performance, the gains are typically modest (Fig. S1).

The algorithm supports three distinct ROI definition methods 
through helper functions. The spherical approach enables definition of 
spherical ROIs with customizable center coordinates and radii, ideal for 
targeting specific anatomical landmarks. The atlas based approach 

Fig. 3. TI-Toolbox software architecture and containerized deployment. A. Unified interface providing graphical user interface (GUI) and command-line interface (CLI) 
access for workflow orchestration. B. Brain Imaging Data Structure (BIDS)-compliant project directory organization showing sourcedata/, derivatives/, and standardized file 
hierarchy. C. Multi-layered deployment architecture: host operating system supporting Docker containerization with launcher program managing SimNIBS and FreeSurfer 
dependencies through isolated container environments.
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interfaces with cortical atlases (Desikan-Killiany, Destrieux, HCP- 
MMP1) [43–45] to target specific cortical regions by label. The 
sub-cortical approach extends targeting capabilities to volumetric 
subcortical structures using the charm labeling.nii.gz output. The 
implementation also provides control over hyper-parameters including 
maximum iterations, population size, and CPU core utilization for per
formance tuning.

The electrode mapping functionality utilizes an optimal assignment 
algorithm to project unconstrained optimization solutions onto standard 
EEG montages. The method constructs a Euclidean distance matrix be
tween the optimized electrode positions and available positions from co- 
registered EEG nets. The Hungarian algorithm via scipy.optimize.line
ar_sum_assignment then solves the bipartite matching problem to 
minimize total assignment distance while ensuring a one-to-one map
ping between optimized and standard positions (Fig. 4A and S5) 
(Table S1).

Local Search Algorithm: The module relies on a pre-computed 
leadfield and performs systematic evaluation of montages through car
tesian product operations, ensuring a logical balance between coverage 
of the search space and compute efficiency (Fig. 2B top). Critically, the 
ex-search algorithm includes per-channel current optimization as a de
cision variable, systematically evaluating current ratios, ensuring 
comprehensive exploration of both electrode positions and current dis
tributions. Results are stored in a.csv file that includes intensity and 
focality metrics for the user to inspect (Table S2).

The local search evaluates possible electrode montages and current 

distributions according to: 

Ntotal =N4
elec⋅Ncurrent 

where: Nelec is the number of electrode candidates per position, N4
elec 

accounts for selecting electrodes at four positions E+
1 , E−

1 , E+
2 , and E−

2 and 
Ncurrent is the number of current ratio combinations.

Valid current combinations satisfy: 

Ncurrent =

{

(I1, I2) :
I1 + I2 = Itotal
Istep ≤ I1, I2 ≤ Ilimit

}

2.3.3. Simulation engine
The simulation module offers a robust control over simulation pa

rameters which interfaces with SimNIBS's sim_struct.SESSION class to 
configure parameters like anisotropy type (scalar, volume normalized, 
directional), electrode geometries, and current delivery.

For TI calculation, the module leverages SimNIBS internal functions 
to compute individual electric fields for each carrier frequency pair. 
These fields are then processed through the TI_utils.get_maxTI() func
tion, which implements the formula suggested by Grossman et al., 2017 
[1].

In addition to TImax, which is defined as the maximum envelope 
modulation vector, a surface-aligned normal component (TInormal) is 
computed from the local TImax vector onto the middle layer of the gray- 
matter surface (Fig. 4C). Both TImax and TInormal are exported and 

Fig. 4. Target definition and optimization objectives for case studies. A. Electrode mapping functionality demonstrating unconstrained optimization to standard high- 
density electroencephalography (HD-EEG) net projection using Hungarian algorithm for optimal electrode assignment. B. Head model comparison between subject-specific 
anatomical models (subjects 1–36) and generalized template (Ernie model, subject 37). C. Vector illustrations: TImax (maximal modulation) and TInormal (surface-aligned 
normal component) vectors relative to the middle layer surface of the gray matter. D. Target regions: left insula (cortical, red), right hippocampus (subcortical, yellow), and 
spherical ROI (green) at Montreal Neurological Institute (MNI) coordinates (36.10, 14.14, 0.33) with 5 mm radius, representing diverse anatomical targeting scenarios. The 
hippocampus originates from voxel-based volumetric segmentation (aseg) while the insula (DKT atlas) and the spherical targets are surface based. Magnified panels depict re- 
oriented and zoomed views of each ROI to highlight their morphology.
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analyzed downstream as part of the analyzer tool.
Output management includes generation of both volumetric and 

surface-mapped results, with automatic conversion to MNI space for 
group-level analyses and visualizations. The module creates visualiza
tion files compatible with Gmsh and Freeview, facilitating immediate 
inspection of simulation results in mesh and voxel spaces.

Additionally, the platform implements multi-channel TI approach for 
montages that involve more than two electrode pairs (multi-polar TI) 
[46] This extension supports emerging TI stimulation paradigms that 
utilize more than two channels to achieve enhanced spatial selectivity, 
steering, or multi-target stimulation (Fig. S2). For multi-polar TI, the 
maximal modulation vectors (TImax) from TIA and TIB are fed back into 
Grossman's analytical formula to find the TIAB vector.

For reproducibility and batch processing, all electrode montages are 
saved to and loaded from a centralized montage database montage_list. 
json that maintains both unipolar and multipolar montage definitions 
for various EEG cap systems.

High-Frequency Field Assessment: The simulator outputs detailed 
analysis of the individual carrier fields before interference calculation. A 
summary statistics file documents key metrics including mean, 
maximum, and percentile values for each carrier field within gray 
matter. Specific Absorption Rate (SAR) can be derived from this output 
according to the safety recommendations from Cassarà et al., 2025 [19,
20] which will be integrated in future version of the TI-Toolbox.

All outputs maintain consistent naming conventions incorporating 
subject identifiers, target names, and field types, facilitating automated 
processing in downstream pipelines. The modular output structure 
supports selective export based on computational resources and 
research needs, with options to disable specific output types through 
configuration parameters.

2.3.4. Analysis and visualization
The analysis module provides tools for quantifying and visualizing TI 

stimulation outcomes through the MeshAnalyzer class. This class im
plements three primary analysis modes: spherical ROI analysis, cortical 
region analysis, and whole-head analysis. The spherical analysis method 
utilizes SimNIBS's mesh manipulation functions to extract field values 
within specified coordinates and radii. For cortical analysis, the class 
interfaces with multiple anatomical atlases through SimNIBS's sub
ject_atlas() function, supporting Desikan-Killiany, Destrieux, and HCP- 
MMP1.

A surface mesh generation pipeline calls the msh2cortex utility to 
project volumetric field data onto the middle layer of the cortex. This 
enables accurate analysis of field distributions in gray matter while ac
counting for cortical folding patterns (Fig. 2D top). Visualization capa
bilities are implemented through the MeshVisualizer class, which 
generates multiple output formats including 3D mesh visualizations 
with customized colormaps (viewable in Gmsh), ROI weighted field 
distribution histograms, and region-wise scatter plots.

For volumetric analysis, the VoxelAnalyzer class provides comple
mentary functionality for analyzing field distributions in NIfTI format. 
This includes both spherical and atlas-based ROI extraction which can 
be inspected in Freeview (Fig. 2D bottom).

Group-level analysis enables collection and comparison of TI simu
lation results across multiple subjects. This module generates averaged 
volumetric field distributions in NIfTI format, producing inter-subject 
comparison plots, and exporting summary statistics across the cohort. 
Group level analysis remains in subject space for cortical and sub- 
cortical regions while arbitrary spherical targets are defined in MNI 
space and automatically transform into each subject's native space using 
SimNIBS 'mni2subject_coords' method.

Beyond these built-in routines, the TI-Toolbox also provides utilities 
for exporting cortical surfaces and field distributions for use in external 
3D modeling environments such as Blender [47]. Subject-specific 
cortical surfaces generated during preprocessing can be exported 
either as.stl files for geometric visualization or as.ply surfaces that retain 

both cortical geometry and corresponding TI field magnitudes. The 
TI-Toolbox also supports exporting surface-aligned 3D vector repre
sentations of the different fields, allowing direction and intensity in
formation to be visualized directly on the cortical surface in external 
rendering tools. These export features were used to produce the 
surface-based figures presented in this work.

2.4. Standardization and reproducibility

TI-Toolbox aims to ensure complete reproducibility and standardi
zation across clinical research workflows. The platform's logging infra
structure provides consistent formatting and hierarchical logging across 
all components. The logger creates timestamped log files following the 
pattern [YYYY-MM-DD HH:MM:SS] [module_name] [level] message, 
ensuring precise tracking of all operations.

The logger communicates with external dependencies including 
SimNIBS, and FreeSurfer, redirecting their outputs through the plat
form's unified logging system. This integration ensures that all pro
cessing steps, regardless of their origin, are captured in a single, 
searchable log file stored in the BIDS-compliant [48] directory structure. 
A complimentary feature creates HTML reports that summarize key 
processes and outcomes similar fMRIPrep [49], documenting aspects of 
the pipeline.

2.5. Deployment and infrastructure

2.5.1. Docker compose
TI-Toolbox's deployment architecture leverages Docker Compose 

orchestration to manage a complex ecosystem of neuroimaging tools 
while ensuring consistent behavior across diverse computing environ
ments. The docker-compose.yml configures the primary service con
tainers: Core (+SimNIBS), FreeSurfer, connected through a dedicated 
bridge network (Fig. 3C).

Volume management is handled through named Docker volumes 
that persist software installations across container restarts, significantly 
reducing startup times. The LOCAL_PROJECT_DIR environment variable 
enables flexible data mounting, allowing users to process data stored 
anywhere on their filesystem while maintaining isolation between the 
host and container environments.

2.5.2. Launcher program
TI-Toolbox implements several deployment strategies to accommo

date different use cases:
Desktop Deployment: The executable launcher provides platform- 

specific binaries created through Electron [50]. The launcher includes 
error handling providing user-friendly feedback for common issues such 
as Docker daemon availability and permission errors. The launcher re
quires no technical expertise or an extensive installation process - users 
simply download the file from the release page [37], double-click to 
install, and launch the GUI. Docker Desktop installation is similarly 
straightforward.

Server Deployment: The bash-based launcher loader.sh implements a 
deployment script that handles the setup necessary for healthy operation 
of the TI-Toolbox. The bash entry point provides a solution for headless 
servers processing and can be used as a desktop alternative to the 
executable approach.

2.5.3. Batch processing and parallelization
TI-Toolbox implements batch processing and parallelization strate

gies to enable efficient analysis of large clinical cohorts. The platform's 
parallelization architecture operates at multiple levels, from individual 
processing steps to cohort-wide analyses.

Subject-Level Parallelization: The preprocessing pipeline imple
ments GNU Parallel integration [40] for concurrent processing of mul
tiple subjects. When invoked with the parallel flag, the system 
automatically detects available CPU cores and distributes subjects across 
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parallel workers.
Algorithm-Level Parallelization: The flex-search optimization mod

ule supports multi-core execution through the CPUs parameter, which is 
passed directly to SimNIBS's differential evolution optimizer for faster 
processing.

Pipeline-Level Batch Processing: The GUI employs multi-threading to 
keep the interface responsive while long-running jobs are carried out in 
background worker threads. A job queue coordinates preprocessing, 
optimization, simulation, and analysis tasks, with real-time progress 
reporting, log streaming, and graceful cancellation. This design allows 
concurrent execution of independent stages across subjects while pre
serving deterministic logging and outputs.

TMUX Parallelization: The code container which is exposed to the 
user interaction comes with TMUX [51] installed which enables further 
multiplexing where the user can span multiple instances of the 
TI-Toolbox simultaneously.

System Monitoring: To monitor the system during high-demand 
processes, a designated System Monitor tab is available that tracks 
CPU and memory usage of the TI-Toolbox processes in real time.

2.6. Case studies

2.6.1. Targets and goals
Using the flex-search optimization algorithm, we evaluated three 

distinct brain targets (Fig. 4D) with specific optimization objectives. For 
the left insula based on DKT atlas [43] (deep cortical target) we per
formed two optimization rounds: (1) TImax optimization maximizing the 
mean field intensity within the ROI, and (2) TInormal optimization 
maximizing the mean surface-aligned normal component within the 
ROI. Both approaches focused on mean rather than maximum values to 
promote homogeneous field distributions across the target region, 
avoiding hotspots that may be more suitable for sub-regions (Fig. S7). 
Then, for the right hippocampus based on FreeSurfer's aseg tool [32] 
(subcortical target): we optimized for TImax, maximizing the mean field 
intensity within the ROI. Given that it is a sub-cortical target, we focused 
solely on intensity optimization without additional directional con
straints as subcortical structures lack the systematic columnar organi
zation of cortex. Lastly, for the spherical ROI (centered at MNI 
coordinates 36.10, 14.14, 0.33; radius 5 mm): We implemented three 
distinct optimization strategies: (1) mean optimization maximizing the 
mean TImax intensity within the ROI, (2) focality optimization maxi
mizing the ratio between mean TImax in the ROI versus mean TImax in 
gray matter using various thresholding approaches, and (3) max opti
mization maximizing the maximum value of the TInormal component 
within the ROI. For the complete target x goal combination diagram 
please see Fig. S6 in the supplementary information.

2.6.2. Subjects
We collected MRI scans of thirty-six participants (mean age = 29.9 

± 9.7 years, 58.3 % Female) from the STRENGTHEN clinical trial 
(Table S4). Participants were excluded if they had any neuroradiologist- 
identified brain structural abnormalities. All participants gave written 
informed consent in accordance with the University of Wisconsin- 
Madison Institutional Review Board. MRI data were collected using a 
3 T MAGNUS (Microstructure Anatomy Gradient for Neuroimaging with 
Ultrafast Scanning, GE Healthcare) head-only MRI scanner. Structural 
images were acquired using T1-and T2-weighted images, with 0.8 mm 
isotropic voxels, and the following parameters. T1-weighted: sequence 
= MP-RAGE (Magnetization-Prepared Rapid Gradient-Echo), repetition 
time (TR) = 2000 ms, echo time (TE) = 3 ms, inverse time (TI) = 1100 
ms, flip angle = 8◦, field of view (FOV) = 256 × 256 mm2, matrix size =
320 x 320 pixels, resolution = 0.8 mm × 0.8 mm x 0.8 mm, number of 
slices = 240, acquisition time = 4 min. T2-weighted: sequence = CUBE- 
T2, TR = 2500 ms, TE = 90 ms, echo train length (ETL) = 120, FOV =
256 × 256 mm2, matrix size = 320 x 320 pixels, resolution = 0.8 mm ×
0.8 mm x 0.8 mm, number of slices = 240, acquisition time = 4 min. Our 

37th participant which serves as our generalized model is the publicly 
available Ernie model.

2.6.3. Flow
Raw DICOM files were preprocessed as in Section 2.3.1. For each 

target and objective, we ran the flex-search optimizer with the ROI 
definitions in Section 2.6.1, using a three-run multi-start configuration 
and retaining the best solution per subject (configurable via Advanced 
Settings: Number of Optimization Runs). We tested 1, 3, and 5 multi- 
starts on the entire cohort for the hippocampus target. The improve
ment plateaued after 3 starts, leading us to select 3 as optimal balance 
between performance and computation time (Fig. S1). Notably, we 
chose to follow the hyper-parameter suggested by Weise et al., 2025 
during our optimization process; popsize = 13, tol = 0.1, mutation=
(0.01,0.5), recombination = 0.7 [42,52].

To address Q1, we performed two simulations for each combination 
of subject, target, and optimization goal: one using the freely optimized 
montage and another using the HD-EEG mapped montage (Fig. 5). For 
Q2, we first optimized montages on the general head model (Ernie) for 
each target-goal combination, then applied these general montages to all 
individual subjects. We subsequently compared the performance of 
these general model montages against individually optimized montages 
to assess the impact of head model individualization on TI optimization 
outcomes (Fig. 6). Our simulation utilized default isotropic conductiv
ities [53–55] (Table S3), 1 mA per channel, 8 mm electrode diameter, 4 
mm thick saline gel and a 2 mm thick rubber electrode on top. Finally, 
we applied group analysis to extract TImax, TInormal, and focality within 
ROIs and gray matter.

For focality optimization, we evaluated three distinct thresholding 
strategies to assess their impact on spatial selectivity. We compared: (i) 
fixed absolute thresholds (0.1 V/m and 0.3 V/m) based on similar field 
strengths reported in the literature [2,42], (ii) adaptive threshold at 50 
% of achievable peak field intensity, and (iii) adaptive threshold at 80 % 
of achievable peak field intensity. For adaptive approaches, a two-pass 
optimization strategy was employed: first, a mean TImax optimization 
determined the achievable field intensity in the target ROI; second, a 
focality optimization informed by achievable values. The lower 
threshold was set at a constant 20 % of the achievable intensity while the 
upper threshold was set at the specified percentage (50 % or 80 %). This 
adaptive strategy ensures that focality constraints are tailored to indi
vidual head geometry and target location rather than applying poten
tially inappropriate fixed values that may lead a lower achieved 
objective value. After optimization and simulation steps were 
completed, we used the analyzer tools to assess field exposures in the 
model according to: 

TIROI
mean =

1
N

∑

j∈ROI
TImax(j) Focality =

TIROI
mean

TIGM
mean 

Where TImax(j) is the TI modulation amplitude at mesh element 
j and TIGM

mean follows the same formulation as TIROI
mean with ROI being the 

entire gray matter.

2.6.4. Statistical analysis
Statistical analyses were conducted using Python with scipy, stats

models, and pandas libraries. Data normality was assessed using the 
Shapiro-Wilk test scipy.stats.shapiro, with parametric paired t-test via 
scipy.stats.ttest_rel or non-parametric Wilcoxon signed-rank test via 
scipy.stats.wilcoxon approaches selected based on normality test results 
(p > 0.05 indicating normal distribution. To control for multiple com
parisons, we employed the Benjamini-Hochberg (BH) false discovery 
rate (FDR) correction procedure [56]. Within each research question (e. 
g., optimized vs. mapped stimulation, Ernie vs. mapped stimulation), all 
p-values from primary, parametric, and nonparametric tests across all 
variables were grouped as a single family for correction, with each 
question corrected independently. Significance levels are reported as 
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follows: *p < 0.05, **p < 0.01, and ***p < 0.001.
Effect sizes were calculated using Cohen's d for parametric tests 

(computed as mean difference divided by pooled standard deviation) 
and r (Z/√N) for non-parametric tests, where Z-scores were obtained 

from the Wilcoxon test statistic. Practical effect sizes were reported by 
computing the percent change between the two groups Δ% =

Bi − Ai
A

⋅ 100% and magnitude of within-subject variability as Δ% =

Fig. 5. Comparison of optimized versus mapped electrode montages. A. Within-subject comparison for left insula of TImax characteristics between ‘optimized’ and 
‘mapped’ conditions: mean TImax = 0.324 vs 0.319 V/m (Δ = − 1.33 %, p = 0.047), maximum TImax = 0.470 vs 0.464 V/m (Δ = − 1.26 %, p = 0.083), focality 
preserved (Δ = 0.18 %, p = 0.609). B. Spherical target results: mean TImax reduction of − 2.22 % (p = 9.58 × 10− 5), maximum TImax reduction of − 2.24 % (p =
0.0001), focality unchanged (p = 0.273). C. Right hippocampus analysis: mean TImax reduction of − 3.53 % (p = 3.20 × 10− 7), maximum TImax reduction − 2.89 % (p 
= 1.48 × 10− 6), and focality reduction of − 2.55 % (p = 0.0006). Colored lines connect paired observations from the same participant (green for increase, red for 
decrease, gray for no change), illustrating individual response to different montage conditions (n = 37). Half violin plots show density distributions. Colored circles 
represent group means with black vertical lines indicating ±SD while rectangles with vertical lines indicate interquartile range (IQR). Statistical comparisons were 
performed using paired t-test or Wilcoxon signed-rank test with significance denoted as: p < 0.001, p < 0.01, p < 0.05, n.s. = not significant. Effect size (Cohen's d/r) 
and percentage change are displayed above each comparison. TImax are expressed as V/m.
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|Bi − Ai |

A
⋅ 100% where A and B represent the two conditions being 

compared.
For inter-individual variability analyses (Q3), we investigated 

anatomical determinants of TI field exposure using data from the opti
mized electrode montages. First, we assessed multicollinearity among 
anatomical predictors (age, bone thickness/volume, CSF thickness/ 
volume, and skin thickness/volume) using correlation analysis. Based on 
high correlations within tissue types, we selected volume measures over 
thickness to reduce multicollinearity while retaining predictive infor
mation. Volumetrics were extracted from lableing.nii.gz file produced 
during subjects’ pre-processing, which thresholds the images on the Z 
axis based on the top of the brainstem (Fig. 8A and B). Then, the sum of 
voxels belonging to desired tissue and above said threshold were 
multiplied by their volume extracted from the NIfTI header using 
nibabel package [57]. We then employed multiple linear regression 
(MLR) model constructed using statsmodels.api.OLS with ordinary least 
squares fitting to quantify the overall variance explained by anatomical 
factors TIROI

mean = β0 + β1⋅Age+ β2⋅Vbone + β3⋅VCSF + β4⋅ Vskin + ϵ. Model 

fit was evaluated using R2, adjusted R2, and F-statistics. The models were 
applied separately to the left insula, right hippocampus and spherical 
targets.

3. Results

3.1. Overview

We investigated TI field characteristics across three distinct brain 
targets in a cohort of 37 participants. To provide useful benchmarks for 
the community we compiled the typical time required for TI-Toolbox 
operations and hardware load (Table 1). For the left insula (deep 
cortical target), we evaluated solutions from both TImax optimization 
(maximizing mean field intensity) and TInormal optimization (maxi
mizing mean surface-aligned normal component). The right hippocam
pus (subcortical target) was analyzed using TImax optimization focused 
on maximizing mean field intensity. The spherical ROI (MNI coordinates 
36.10, 14.14, 0.33; radius 5 mm) was evaluated using three 

Fig. 6. Individualized versus generalized head modeling performance. A-C. On the left, montages suggested by the generalized model (subject 37, Ernie) for the Left insula, 
sphere, and right hippocampus. On the right, cortical field distribution and extracted ROI for subsequent analyses. D. Left Insula comparison: subject-specific suggested mapped 
montages (red dots) versus generalized template montage (Ernie, blue dots). Individualized models achieved higher mean TImax (+2.70 %, p = 6.51 × 10− 6) and maximum 
TImax (+3.31 %, p = 9.88 × 10− 5) compared to template. E. Spherical comparison: Individualized models showed modest advantages in maximum field (+1.86 %, p = 0.006) 
and superior focality (+9.3 %, p = 1.75 × 10− 6). F. Right hippocampus comparison in volumetric space: Comparable field intensities between approaches (mean TImax +1.21 
%, p = 0.213; maximum TImax +2.38 %, p = 0.130) with no significant difference in focality (+0.07 %, p = 0.981). Colored lines connect paired observations from the same 
participant (green for increase, red for decrease, gray for no change), illustrating individual response to different montage conditions (n = 36). Half violin plots show density 
distributions. Colored circles represent group means with black vertical lines indicating ±SD while rectangles with vertical lines indicate interquartile range (IQR). Statistical 
comparisons were performed using paired t-test or Wilcoxon signed-rank test with significance denoted as: p < 0.001, p < 0.01, p < 0.05, n.s. = not significant. Effect size 
(Cohen's d/r) and percentage change are displayed above each comparison. TImax are expressed as V/m.
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optimization strategies: mean TImax intensity, focality (ratio of mean 
TImax in ROI to gray matter), and maximum TInormal component. All 
statistical comparisons employed paired tests selected based on 
normality assessments (two-tailed α = 0.05), with effect sizes and per
centage changes calculated to evaluate both statistical and practical 
significance.

3.2. Mapping optimized solutions to HD-EEG

To assess whether constraining electrode placements to standard HD- 
EEG positions compromises optimization benefits, we compared field 
characteristics between freely optimized montages (optimized) and 
their mapped counterparts (mapped) across all three targets (n = 37, 
including the generalized model subject). These analyses focus on the 

Table 1 
Components and performance of TI-Toolbox on a MacBook Pro (2023, Apple Silicon M2 Max, 32 GB RAM). Benchmark results include computation times for key 
functions, memory usage, and typical workflow performance to illustrate efficiency and scalability.

Module Primary Inputs Primary Outputs Runtime per 
Subject

Memory 
Peak (GB)

Notes

Preprocessing

DICOM Conversion Raw DICOM series (T1w, T2w) BIDS-compliant NIfTI files sec 0.3 single core (83.4 % CPU)
Reconstruction 

(recon-all)
T1w/T2w-weighted NIfTI Tissue segmentation, surface meshes, 

cortical parcellations
3h 44m 2.2 single core (68.6 % CPU)

FEM Generation 
(CHARM)

T1w/T2w NIfTI FEM head model (.msh), co-registered 
EEG nets, labeling.nii.gz

1h 10m 8.4 multi-core (640.4 % CPU)

Tissue Analysis labeling.nii.gz Bone/CSF/skin metrics 24s per tissue 0.44 single core
Leadfield Generation FEM model, EEG montage definition Pre-computed leadfield matrix Variable Variable single core
EEG10-20 FEM model, Okamoto 2004 

coordinates
Leadfield matrix (21 electrodes) 2m 34s 2.0 electrodes, single core (97.4 % 

CPU)
EEG10-10 FEM model, UI Jurak 2007 

coordinates
Leadfield matrix (75 electrodes) 18m 3s 7.1 electrodes, single core (92.6 % 

CPU)
EEG10-5 FEM model, GSN-HydroCel-185 

coordinates
Leadfield matrix (183 electrodes) 46m 23s 7.4 electrodes, single core (95.1 % 

CPU)

Optimization

Flex-Search (Genetic) FEM model, target ROI, goal function, 
opt parameters

Optimized electrode positions, field 
metrics

40m 33s 9.7 Genetic algorithm, 3 multistarts, 
single core (101.5 % CPU)

Local-Search 
(Cartesian Product)

Pre-computed leadfield, EEG 
candidates, current parameters, 
target ROI

CSV of montage-current combinations, 
intensity/focality metrics

Variable 4.0 Leadfield-based, single core

2 electrodes Leadfield, electrode-current 
combinations

112 evaluations 1m 27s 4.0 single core (85.2 % CPU)

4 electrodes Leadfield, electrode-current 
combinations

1792 evaluations 10m 23s 4.0 single core (102.2 % CPU)

6 electrodes Leadfield, electrode-current 
combinations

9072 evaluations 50m 46s 4.0 single core (100.5 % CPU)

Electrode Mapping Optimized positions, standard EEG 
coordinates

Mapped positions to standard nets – – Post-optimization mapping

Simulation

TI Field Computation FEM model, electrode montage, 
electrode/current/anisotropy 
parameters

TImax/TInormal fields (volumetric & 
surface), carrier fields, MNI outputs, 
visualizations

11m 58s 3.4 Complete pipeline, single core 
(56.1 %)

Montage 
visualization

Electrode positions on EEG net Electrode placement visualization 2s – Electrode placement check

SimNIBS simulation FEM model, electrode montage FEM-solved electric fields (2 pairs) 8m 56s 3.4 FEM simulation
FEM assembly/ 

solving
FEM model, current injection Solved electric field per pair 2m per pair – Per electrode pair

Volume 
interpolation

Surface fields, gray matter mask Volumetric gray matter field map 4m 55s – Gray matter interpolation

NIfTI conversion Mesh fields, anatomical T1 MNI-transformed field volumes 2m 52s – MNI transformation
T1 to MNI Subject T1, MNI template Registration transformation 12s – Anatomical registration
Mesh to NIfTI Field meshes, transformation Field volumes in MNI space 2m 40s – Field volume creation

Results processing Simulation outputs Organized output files 1s – File organization

Analysis & Visualization

Mesh Analyzer Surface-mapped fields (.msh), ROI, 
atlas

Surface-based statistics, 3D visualizations 
(Gmsh)

35s 0.44 Sphere and cortical atlases

Voxel Analyzer Volumetric fields (NIfTI), ROI, atlas Voxel-wise statistics, visualization 
(Freeview)

7s 0.31 Volume-based analysis, sphere 
ROI

Group Analyzer Multi-subject TI results, MNI/subject 
coordinates

cohort statistics, MNI maps Variable – Multi-subject analysis

System Components

Logging & Reports All module operations, pipeline 
execution data

Timestamped logs, HTML preprocessing/ 
simulation reports

– – Automatic documentation

Deployment Docker Engine/Docker Desktop, user 
data directories

Containerized environment, CLI/GUI 
(PyQt5), cross-platform compatibility

– – Docker-based deployment

TOTAL PIPELINE Raw DICOM to analyzed TI fields Complete analysis-ready outputs 5–6 h 9.7 Minimum 16 GB RAM 
recommended

TI-Toolbox: Components, Inputs, Outputs, and Performance Benchmarks.
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mean optimization results—maximizing mean TImax intensity for the left 
insula, right hippocampus, and spherical ROI. For the left insula, map
ping to standard electrode positions resulted in minimal yet statistically 
significant impact with mean TImax (− 1.33 %, p = 0.047, |Δ| = 2.55 %, 
d = − 0.44) and maximum (− 1.26 %, p = 0.083, |Δ| = 3.07 %, d =
− 0.34) field metrics showing small reductions that did not reach sig
nificance. Focality also remained unchanged 1.40 vs 1.41 (+0.17 % p =
0.609, |Δ| = 1.63 %, d = 0.08), suggesting that spatial selectivity was 
preserved (Fig. 5A). For the spherical target, mapping decreased mean 
TImax from 0.352 V/m to 0.344 V/m (− 2.22 %, p = 9.58 × 10− 5, |Δ| =
2.73 %, d = − 0.79), with maximum values showing similar reductions 
from 0.388 V/m to 0.380 V/m (− 2.25 %, p = 0.0001, |Δ| = 2.86 %, d =
− 0.74). However, focality remained statistically unchanged 1.541 vs 
1.548 (+0.505 %, p = 0.273, |Δ| = 2.06 %, d = 0.19), reinforcing that 
electrode mapping preserves targeting precision (Fig. 5B). The right 
hippocampus demonstrated stronger sensitivity to the mapping effect 
which may be due to the increase mapping distance (Fig. S5) where 
mean TImax values decreased from 0.316 V/m in optimized solutions to 
0.305 V/m when mapped (− 3.54 %, p = 3.20 × 10− 7, |Δ| = 3.77 %, d =
− 1.09), and maximum values decreased from 0.510 V/m to 0.495 V/m 
(− 2.89 %, p = 1.48 × 10− 6, |Δ| = 3.21 %, r = 0.74). Focality also 
showed a small but statistically significant reduction from 1.526 to 
1.487 (− 2.55 %, p = 0.00064, |Δ| = 3.56 %, r = 0.54), indicating 
modest compromise in spatial selectivity for this deeper target (Fig. 5C). 
Overall, these findings demonstrate that constraining electrode place
ments to HD-EEG positions resulted in minimal reductions in field in
tensity across all targets (1–4 %), with focality preserved for cortical and 
spherical targets, establishing standard HD-EEG montages as a practical 
solution for TI stimulation without substantially compromising optimi
zation benefits.

3.3. Individualized versus generalized montages

Next, we examined whether a montage optimized on a personalized 
model provides meaningful advantages over using a consistent montage 
found via optimization on a generalized head model (Ernie model). 
Importantly, all simulations used the individualized head models for 
field calculation. To avoid self-comparison, the generalized model sub
ject was excluded from these analyses (n = 36). For the left insula, 
individualized models with mapped electrodes achieved higher field 
intensities than the generalized model, with mean TImax of 0.321 V/m 
versus 0.312 V/m (+2.70 %, p = 6.51 × 10− 6, |Δ| = 3.00 %, d = 0.94) 
and maximum values of 0.464 V/m versus 0.450 V/m (+3.31 %, p =
9.88 × 10− 5, |Δ| = 4.28 %, d = 0.75). Focality showed no significant 
difference between approaches 1.412 vs 1.413 (+0.05 %, p = 0.93, |Δ| 
= 3.21 %, r = 0.026) (Fig. 6A–D). The right hippocampus revealed a 
comparable field intensity between individualized and generalized 
models. Mean TImax values were virtually identical 0.305 vs 0.302 V/m 
(+1.21 %, p = 0.213, |Δ| = 3.79 %, d = 0.26), as well as the maximum 
values 0.497 vs 0.486 V/m (+2.38 %, p = 0.130, |Δ| = 5.81 %, d =
0.35). Focality showed no significant difference between approaches 
1.489 vs 1.488 (+0.07 %, p = 0.98, |Δ| = 5.09 %, r = 0.005), suggesting 
comparable spatial selectivity for this deep target (Fig. 6C–F). For the 
spherical target, individualized models showed no advantages in field 
intensity where mean values 0.345 vs 0.339 V/m (+1.866 %, p = 0.006, 
|Δ| = 3.12 %, d = 0.50) and max values 0.381 vs 0.372 V/m (+2.42 %, p 
= 0.006, |Δ| = 3.87 %, d = 0.48). Notably, individualized models 
achieved substantially better focality compared to the template 1.555 vs 
1.420 (+9.29 %, p = 1.75 × 10− 7, |Δ| = 9.57 %, r = 0.84), indicating 
superior spatial selectivity when targeting small regions (Fig. 6B–E). 
Collectively, these findings indicate that personalized montage optimi
zation provides modest but significant advantages over applying a 
consistent montage found via optimization on a generic model for the 
left insula (2–3 % higher intensity) and spherical target 9 % better 
focality, while the right hippocampus showed comparable performance 
between approaches, suggesting that individualized montage 

optimization may be particularly valuable for precise focal targeting but 
less critical for deep subcortical structures.

3.4. Surface-aligned field components

Given the importance of field orientation relative to cortical geom
etry [15,58,59], we assessed the impact of mapping and generalization 
described before (sections 3.3 and 3.4) on the normal component of 
TImax (TInormal) for cortical targets. Comparing mapped to optimized 
montages for the left insula, mean TInormal decreased from 0.226 V/m to 
0.216 V/m (-4.24 %, p = 1.10 × 10− 8, |Δ| = 4.37 %, d = − 1.28), with 
maximum values showing similar reductions from 0.402 V/m to 0.394 
V/m (− 1.86 %, p = 0.024, |Δ| = 4.02 %, d = − 0.42). Normal focality 
remained statistically unchanged 2.265 vs 2.244 (− 0.91 %, p = 0.117, 
|Δ| = 2.50 %, r = 0.26), suggesting preserved directional selectivity 
despite electrode constraints (Fig. 7A). For the spherical target (using 
the max optimization that maximized TInormal), comparable sensitivity 
of the normal component to electrode mapping was observed, with 
mean values decreasing from 0.201 V/m to 0.192 V/m (− 4.66 %, p =
1.66 × 10− 5, |Δ| = 5.60 %, Cohen's d = − 0.88) and maximum values 
from 0.351 V/m to 0.343 V/m (Δ = − 0.0073 V/m, − 2.09 %, p = 0.006, 
|Δ| = 3.27 %, d = 0.46). Normal focality showed no reduction for the 
mapped condition 2.025 vs 1.983 (− 2.05 %, p = 0.06, |Δ| = 5.06 %, 
Cohen's d = − 0.31) (Fig. 7C). When comparing individualized mapped 
montages to the montage suggested by a generalized model, the left 
insula showed no difference in mean TInormal 0.217 V/m for mapped vs 
0.216 V/m for Ernie (+0.27 % p = 0.647, |Δ| = 2.24 %, d = 0.09), 
though individualized models achieved higher maximum values 0.396 
vs 0.382 V/m (+3.52 %, p = 0.002, |Δ| = 5.30 %, d = 0.55) at the cost of 
reduced focality 2.241 vs 2.342, (− 4.31 %, p = 0.003, |Δ| = 5.30 %, r =
0.56) (Fig. 7B). The spherical target demonstrated more pronounced 
differences, with individualized models showing lower mean TInormal 
0.191 vs 0.220 V/m (− 13.08 %, p = 0.0002, |Δ| = 15.50 %, r = 0.65) 
but higher maximum values 0.344 vs 0.332 V/m (+3.74 %, p = 0.0002, 
|Δ| = 4.78 %, r = 0.67) and substantially reduced focality 1.971 vs 
2.293 (− 14.01 %, p = 0.0003, |Δ| = 17.01 %, r = 0.63) (Fig. 7D). Taken 
together, these findings indicate that surface-aligned normal field 
components showed similar sensitivity to electrode mapping as TImax 
metrics (2–5 % reductions), with preserved focality, while comparisons 
between individualized and generalized models revealed complex 
trade-offs between intensity and focality.

3.5. Determinants of inter-individual variability

To identify anatomical and demographic factors underlying inter- 
individual variability in TI field exposure, we analyzed data from the 
optimized electrode montages across all targets. Initial correlation 
analysis revealed strong within-tissue correlations (Fig. S4), with bone 
thickness and volume showing correlations exceeding r = 0.9, and 
similar patterns for CSF and skin measures. Based on this multi
collinearity assessment, we selected volume measures over thickness 
measures for subsequent analyses as described in section 2.6.4. To 
quantify the overall variance explained by anatomical factors, we per
formed MLR analyses with age, CSF volume, bone volume, and skin 
volume as predictors of mean TImax in the three ROIs. For the left insula, 
these anatomical features collectively explained 46.9 % of the variance 
in field intensity (R2 = 0.469, adjusted R2 = 0.400, F = 6.833, p = 4.59 
× 10− 4), indicating substantial predictive power. Individual predictors 
showed that bone volume (β = − 0.000430, p = 0.0024) and skin volume 
(β = − 0.000600, p = 0.0248) were significant predictors of field in
tensity, while CSF volume (β = − 0.000113, p = 0.5227) and age (β =
− 0.000134, p = 0.8315) showed no significant associations. The right 
hippocampus model showed comparable explanatory power, with 
anatomical features accounting for 41.1 % of variance (R2 = 0.411, 
adjusted R2 = 0.335, F = 5.411, p = 2.01 × 10− 3). Similarly, bone 
volume (β = − 0.000314, p = 0.0166) and skin volume (β = − 0.000574, 
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p = 0.0245) emerged as significant predictors. CSF volume showed a 
marginally significant association (β = − 0.000311, p = 0.0720), 
approaching the significance threshold, while age remained non- 
significant (β = 0.000358, p = 0.5515). For the spherical target 
(centered at MNI coordinates 36.10, 14.14, 0.33, r = 5 mm) anatomical 
features explained 31 % of the variance in field intensity (R2 = 0.309, 
adjusted R2 = 0.221, F = 3.4773, p = 1.85 × 10− 2). While none of the 
individual predictor reached significance, the trend remained consistent 
with the other ROIS where bone volume (β = − 0.000317, p = 0.0631), 
skin volume (β = − 0.000558, p = 0.0925) were significant predictors, 
and CSF volume (β = − 0.00038, p = 0.0956) showed. while age (β =
− 0.000146, p = 0.854) showed no significant association. Collectively, 
the model explained 31–47 % of inter-individual variability in mean 
TImax across all three targets. Bone, skin, and CSF volumes emerged as 

significant predictors, while age showed no significant associations.

4. Discussion

4.1. TI-Toolbox: strengths and the gap it closes

TI-Toolbox unifies the end-to-end TI workflow—from DICOM pre
processing and head-model generation through montage optimization, 
field simulation, analysis, and visualization —under a single, contain
erized framework with both GUI and CLI access. The platform lowers 
technical barriers, promotes standardized outputs and reports, and en
ables reproducible, cohort-level studies. Beyond orchestration, it adds 
TI-specific capabilities: electrode mapping from free solutions to a va
riety of EEG nets (Table S5), support for multiple optimization 

Fig. 7. Surface-aligned normal component (TInormal) analysis for cortical and spherical targets. A. Left insula comparison between optimized and mapped electrode montages 
for TInormal field component (optimization goal: maximize mean TInormal). Mean values decreased from 0.226 to 0.216 V/m (Δ = -4.24 %, p = 1.10 × 10− 8), while focality 
remained preserved (p = 0.117). B. Left insula comparison between individualized mapped montages and generalized model (Ernie) for TInormal (optimization goal: maximize 
mean TInormal). No significant difference in mean values (0.216 V/m for both, p = 0.647), though individualized models achieved higher maximum values (+3.52 %, p =
0.002) with reduced focality (-4.31 %, p = 0.0002). C. Spherical target comparison between optimized and mapped montages for TInormal (optimization goal: maximize 
maximum TInormal). Mean values decreased from 0.201 to 0.192 V/m (Δ = -4.66 %, p = 1.66 × 10− 5), with non-significant focality reduction (p = 0.06). D. Spherical target 
comparison between individualized and generalized models for TInormal (optimization goal: maximize maximum TInormal). Individualized models showed lower mean values 
(0.191 vs 0.220 V/m, -13.08 %, p = 0.0002) but higher maximum values (+3.74 %, p = 0.0002) with substantially reduced focality (-14.01 %, p = 0.0003). Colored lines 
connect paired observations from the same participant (green for increase, red for decrease, gray for no change), illustrating individual response to different montage conditions. 
Half violin plots show density distributions. Colored circles represent group means with black vertical lines indicating ±SD while rectangles with vertical lines indicate inter
quartile range (IQR). Statistical comparisons were performed using paired t-test or Wilcoxon signed-rank test with significance denoted as: p < 0.001, p < 0.01, p < 0.05, n.s. 
= not significant. Effect size (Cohen's d/r) and percentage change are displayed above each comparison. TImax are expressed as V/m.
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approaches, computation of both TImax and gray matter surface-aligned 
TInormal, and multi-polar simulations. Every module comes with sensible 
defaults to allow clinical researchers without extensive computational 
background to build models, run optimizations and visualize results 
within a few mouse clicks.

4.2. Related software and the SimNIBS foundation

We chose to build TI-Toolbox as an integrated wrapper around 
SimNIBS [60] for several compelling reasons. First, SimNIBS provides a 
Python-based interface that enables programmatic access to all core 
functionalities, facilitating easy integration. This allowed us to extend its 
capabilities while maintaining compatibility with its core functional
ities. Second, SimNIBS has been validated through peer-reviewed 
studies comparing simulated fields with intracranial recordings [17,
61]. Lastly, SimNIBS benefits from an active community of developers 
and users who continuously contribute improvements, bug fixes, and 
methodological advances.

However, other solutions that allow for computation of TI in silico 
exist, each with distinct capabilities. Dedicated commercial solutions 
include the TI Planning Tool (IT'IS Foundation) [21,62] and 
HD-Targets-IFS (Soterix Medical) [22]. The TI Planning tool provides 
multi-objective optimization, model individualization and have a 
web-based approach removing local installation requirements while the 
HD-Targets-IFS has a more limited set of functionalities utilizing the 
MNI model. Notably, both commercial platforms deliver robust solu
tions but typically require licensing fees and operate within 
closed-source environments, potentially limiting reproducibility and 
adaptation. Moreover, multiphysics solutions such as Sim4Life (ZMT 
Zurich MedTech AG) [23] and COMSOL can provide TI simulation ca
pabilities. While Sim4Life has been used extensively throughout the TI 
literature [11,46,63] fewer research groups have chosen to rely on 
COMSOL for their TI modeling efforts possibility due to increased 
complexity and lack of integration within the TI research community 
[24,64].

Aside of commercial solutions, other open-source alternatives that 

Fig. 8. Anatomical determinants of inter-individual variability in TI field exposure. A. Representative tissue segmentation from a single participant displayed in axial, 
coronal, and sagittal views. Skin (orange), gray matter (gray) and cortical bone structures (white, including compact and spongy bone layers), cerebrospinal fluid (CSF) 
highlighting subarachnoid and ventricular CSF distributions (dark blue). B. Visualization of skin, skull and CSF mean thickness mapping, with color gradient indicating thickness 
variations (scale: X-Y mm). C. Multiple linear regression coefficient forest plot for right hippocampus showing standardized coefficients and 95 % confidence intervals. Bone 
volume (β = -0.0003, p = 0.0166) and skin volume (β = -0.0006, p = 0.0245) emerged as significant predictors, CSF volume approached significance (β = -0.0003, p =
0.0720), while age showed no association (β = -0.0004, p = 0.5515). D. Partial regression plots demonstrating predictor-outcome relationships for right hippocampus TImax 
field intensity while controlling for other variables in the model. Individual data points represent participants (n = 36) with regression lines and significance indicators (*p < 
0.05, n.s. = not significant).
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are not TI specific allow for computation of TI. Among them are 
COMETS2 and ROAST [25,26], MATLAB based packages initially 
developed for tES computation and now extend that to TI. However, a 
MATLAB license and high technical abilities are required which may 
hinder a wider adoption by the clinical community. More recently, the 
o2S2PARC platform [65] was introduced which provides a significant 
contribution to support open-science. Developed as part of the NIH's 
SPARC program, o2S2PARC is a cloud-based, browser-accessible plat
form that promotes collaborative, and sustainable computational 
modeling in neuroscience. For TI, users can construct workflows that 
integrate multi-physics modeling capabilities for TI optimization [66], 
with post-processing services including 3D visualizations and custom 
analytics tools. However, the computational blocks integrated within 
o2S2PARC which are required for the complete TI workflow are not 
open-source.

4.3. Case studies: summary and interpretation

Our case studies reveal several important insights for the practical 
implementation of TI stimulation. While some of our comparisons 
reached statistical significance, it is crucial to distinguish between sta
tistical and clinical relevance. The cohort-level mean percentage dif
ferences were small, ranging from approximately 1–4 %, and in isolation 
are unlikely to be clinically meaningful as intensity remains far within 
sub-threshold stimulation regime [67–69]. However, dedicated efforts 
should investigate the possibility of using TI for neural entrainment 
where such field variance may be critical [70,71].

The validity of electrode mapping emerged as a particularly 
encouraging finding for clinical translation. When we mapped uncon
strained genetic optimization solutions to standard HD-EEG net posi
tions, the resulting montages preserved both intensity and focality 
characteristics without substantially impairing optimization benefits 
(Fig. 5). This preservation of field characteristics suggests that mapping 
offers a practical route to montage standardization and smoother clin
ical translation, eliminating the need for specialized neuronavigation 
devices while maintaining targeting efficacy. The successful mapping 
validates the use of pre-manufactured HD-EEG nets in clinical settings, 
potentially reducing both cost and complexity of TI implementation.

Similarly, montages optimized on a generalized head model proved 
adequate for both cortical and subcortical targets when applied to in
dividual head models, suggesting that initial montage design and opti
mization can proceed without individual MRI scans. However, in line 
with previous research, accurate exposure assessment clearly requires 
individualized models due to the substantial inter-individual variability 
observed in our cohort [2,30,66,72]. This finding supports a hybrid 
workflow where generalized models guide initial protocol development, 
while individualized models enable precise dose determination and 
safety assessment for clinical applications [19,20]. It is important to 
note that our analysis assumes quasi-uniform field distributions within 
ROIs when computing mean values, while in reality the fields exhibit 
spatial gradients and hotspots that may have differential physiological 
effects depending on the specific neural circuits engaged [73] (Fig. S7). 
Furthermore, our analyses revealed that TInormal did not demonstrate 
superior sensitivity to methodological manipulations compared to TImax 
when evaluating mapping effects or model individualization.

Finally, analysis of inter-individual variability revealed that tissue 
composition plays a critical role in determining field exposure patterns. 
Consistent with previous tES literature [53,74,75], anatomical features 
of the head substantially influence electric field penetration and distri
bution. Our multiple linear regression analyses quantified these re
lationships, demonstrating that anatomical features (age, CSF volume, 
bone volume, and skin volume) collectively explained 46.9 % of vari
ance in field intensity for the left insula and 41.1 % for the right hip
pocampus using optimized montages. Bone volume and skin volume 
emerged as significant predictors for both targets, confirming their 
consistent role as barriers to electric field penetration. Interestingly, CSF 

volume showed a marginally significant association (p = 0.0720) for the 
right hippocampus but not for the left insula (p = 0.5227), likely 
reflecting the hippocampus's proximity to the ventricular system where 
CSF-filled spaces create more pronounced current shunting effects. Age 
showed no significant association with field intensity in either target, 
suggesting that anatomical characteristics mediate any age-related ef
fects on field penetration. Importantly, inter-subject variability in TI 
exposure has been linked to functional outcomes, as demonstrated by 
Violante et al. (2023) who found that participants' evoked BOLD signal 
in the hippocampus was inversely correlated to TI field intensity, 
highlighting the potential clinical relevance of individualized field 
predictions for understanding treatment response variability [11].

These findings highlight a critical translational opportunity: devel
oping predictive models that estimate key anatomical parameters from 
readily obtainable clinical measurements. While our study demonstrates 
that bone volume, skin volume, and CSF volume are primary de
terminants of TI field exposure, obtaining these metrics requires MRI 
scanning that may be unavailable in many clinical settings. Future 
research should investigate whether easily acquired measurements such 
as head circumference, demographic variables (age, sex, ethnicity), 
body mass index, could serve as proxy predictors for these volumetric 
parameters. Machine learning approaches could potentially map these 
accessible metrics to the anatomical features that govern field penetra
tion, enabling clinicians to approximate individualized exposure esti
mates without neuroimaging.

4.4. Limitations

Several limitations warrant consideration when interpreting our 
findings. First, our simulations employed isotropic conductivity values 
and did not leverage diffusion-derived anisotropy which could influence 
field exposure. However, there is not enough evidence that an aniso
tropic approach is necessary for targeting gray matter ROIs [76]. Future 
research should systematically investigate the impact of incorporating 
DTI on TI field distributions.

Second, all electromagnetic field calculations relied on the quasi- 
static approximation, which assumes that propagation and inductive 
effects are negligible at the frequencies employed in TI stimulation 
(typically 1–20 kHz carriers) [9]. While this approximation is widely 
accepted for conventional tES and has been validated for frequencies up 
to several kilohertz in biological tissues [77], the validity at TI carrier 
frequencies warrants continued investigation [78].

Third, our electrode mapping approach, while successful in preser
ving field characteristics, was evaluated using only the inner 185 elec
trodes of the GSN-HydroCel-256 system (EGI/Philips) [79] (Fig. S9). 
This high-density array provides smaller inter-electrode spacing 
compared to traditional EEG nets, which may represent an upper bound 
for successful mapping resolution. The minimum electrode density 
required for accurate mapping of optimized TI montages remains un
explored, and future work should systematically evaluate how mapping 
fidelity degrades with decreasing electrode density, particularly for 
standard 10-10 or 10–20 with larger inter-electrode distances. However, 
a secondary analysis revealed that 10:10 systems with significantly 
sparser electrode coverage may still remain an adequate solution for the 
mapping functionality while the sparser 10:20 system cannot sustain the 
field characteristics qualities compared to the freely optimized positions 
[80] (Fig. S8).

Finally, the tissue analyzer module represents an experimental tool 
that, while providing consistent measurements of anatomical properties 
across our cohort, has not been independently validated against ground- 
truth measurements from high-resolution CT imaging [81] or other 
specialized segmentation methods [82]. Nevertheless, it serves as an 
informative tool for researchers performing computational modeling by 
automatically extracting key anatomical metrics that our results and the 
broader tES literature consistently identify as primary contributors to 
inter-individual variability. The automated extraction of tissue metrics 
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provides researchers with readily available covariates that can explain 
substantial portions of field variance. This functionality aims to support 
hypothesis generation and covariate adjustment in group studies rather 
than provide clinical-grade morphometric assessment.

4.5. Implications and future directions

The development and validation of TI-Toolbox carries several im
plications for the broader TI research community. As an open-source 
platform, the TI-Toolbox provides an opportunity for collaborative 
advancement of TI methodologies. We encourage researchers to not only 
utilize the platform but also to contribute improvements and share 
workflows in its dedicated GitHub Discussion page [83]. TI-Toolbox 
follows BIDS input/output best practices. Therefore, project di
rectories and their data can benefit from natural integration with 
existing BIDS-APPS [84] like fMRIPrep and MRIQC [85] which can ease 
data processing and sharing [49,85]. We encourage users and contrib
utors to utilize our dedicated Discussion and Issue pages to discuss 
contribution opportunities and report undesired behavior. This 
community-driven approach will be essential for establishing stan
dardized protocols and accelerating the development of interoperable 
tools across different research groups and clinical centers.

Our findings also inform best practices for clinical implementation of 
TI stimulation. The evidence suggests that prospective clinical studies 
should adopt a tiered approach to model complexity. While generalized 
head models can effectively guide initial montage design and protocol 
development, individualized models become crucial when relating 
exposure to electrophysiological and behavioral outcomes [66,67]. This 
distinction is particularly important for dose-response studies and for 
understanding inter-individual variability in treatment response [11,
86]. The substantial variance in field exposure across individuals, even 
with identical montages as seen here and in Karimi et al., 2025 [66], 
underscores the necessity of subject-specific modeling for precision 
medicine applications.

Regarding field assessment metrics, the TI-Toolbox support reporting 
strategies that capture multiple aspects of TI stimulation. Because the 
mechanisms underlying TI stimulation remains unclear, we recommend 
that researchers report both TImax and TInormal, as these metrics provide 
complementary information about field intensity and directionality 
though their appropriateness is to be determined. While TImax remains 
the primary metric for overall exposure assessment, TInormal may prove 
particularly relevant for understanding interactions with columnar 
cortical organization [87,88]. Future work should continue to develop 
concurrent stimulation-recording and closed-loop paradigms to eluci
date the online physiological effects of TI in humans and emphasize the 
relevant properties that researchers should optimize for [14,66,89]. The 
field will also benefit from direct measurements of fields via intracranial 
systems that can be used to test the accuracy of in silico models and 
better inform safety recommendations [5,17].

Furthermore, our secondary analysis revealed a nuanced picture that 
can inform future studies (Fig. S7). Mean-based optimization promoted 
a more homogeneous field distribution across the target region, poten
tially engaging a larger proportion of the neural population while 
avoiding hotspots that may dominate max-based optimization strategies 
(Fig. S7C). However, max-based optimization reached a higher peak in 
both larger and small cortical regions (Fig. S7A and B). Based on our 
analysis, we recommend the usage of mean-based optimization for 
larger ROIs to promote field homogeneity while smaller targets or sub- 
regions may benefit from a max-based optimization. Researchers 
should formally define their stimulation objectives and ROIs and apply 
the appropriate optimization goal when deriving montages.

Finally, our experience with optimization algorithms provides 
guidance for practical implementation. The flex-search algorithm ach
ieves field intensities comparable to, if not better than, existing opti
mization algorithms reported in the literature [90]. The multi-start 
strategy with three independent runs effectively minimizes the 

optimization function value and improves targeting, as demonstrated for 
the spherical ROI where it yielded a 4.18 % improvement. However, this 
modest gain must be weighed against the tripled computational cost, 
suggesting that single runs may suffice for many applications (Fig. S1).

Validation of flex-search results using a local search, where we 
evaluated four candidate electrode positions around each optimized 
electrode location, agreed with the flex-search suggestion, confirming 
the robustness of the genetic algorithm and mapping approach 
(Table S2). Furthermore, sweeping through the current ratios did not 
improve the flex-search solution which assumed a 1:1 current ratio 
(Table S2). Future research should systematically investigate the impact 
of including current ratio as a decision variable vs a fixed 1:1 on quality 
of solution and computational cost. The optimization approaches 
offered in the TI-Toolbox are complementary to one another. While the 
flex-search is our recommended method due to the short runtime and its 
theoretical ability to find global optimum with appropriate tuning of 
hyper-parameters, it provides no control over electrode placements. 
Thus, the ex-search can become useful to researchers and clinicians 
wishing to control the positions available during the optimization search 
(Fig. 2B upper). This can become increasingly useful when real-world 
limitations are accounted for like bad impedances in the occipital and 
lateral regions [91] or surgical intracranial implants.

The focality optimization objective proved more nuanced and 
context-dependent, requiring careful consideration of thresholding 
strategies. Our analysis revealed that dynamic thresholding dramati
cally affects results - 50 % relative thresholds increased focality by 75 % 
compared to fixed thresholds, while 80 % thresholds decreased it by 
36.6 %. This suggests that optimal threshold selection is critical for 
successful optimization (Fig. S3) [42]. Further research should be con
ducted into the relationship of the dynamic thresholding and ROI 
location as it is possible that more superficial ROIs will benefit from high 
upper bound thresholds while converging successfully on a more focal 
solution.

4.6. Concluding remarks

Taken together, the case studies support a pragmatic translational 
pathway: use standardized mapping for clinical usability, leverage a 
generalized model to prototype montages, and rely on individualized 
models for exposure quantification and safety assessment. These find
ings support using mapped montages on standard HD-EEG nets and 
generalized models for protocol development, with individualized 
models reserved for precise exposure quantification. TI-Toolbox aims to 
operationalize a pathway with a reproducible, open, and extensible 
framework that follows neuroinformatics best practices laying the 
groundwork for multi-center harmonization and prospective validation 
for future human studies.
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