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Background: Temporal interference (TI) stimulation is a novel non-invasive brain stimulation approach that
promises selective targeting of deep brain structures while minimizing off-target cortical stimulation. Despite a
growing interest in TI applications, there is a need for integrated computational tools that seamlessly connect

Neuroimaging ) neuroimaging data preprocessing through montage optimization, field simulation, and analysis within a unified
Computational modeling . N .
SimNIBS framework designed for translational and clinical research.

Methods: We developed TI-Toolbox, an open-source software platform that integrates established neuroimaging
tools (dem2niix, SIimNIBS, FreeSurfer) with specialized algorithms for TI research. The platform provides end-to-
end workflows encompassing structural MRI preprocessing, volume conduction modeling, montage optimization,
electric field simulation, and region-of-interest analysis. Both graphical user interface and command-line inter-
face implementations ensure accessibility across user expertise levels. The platform employs containerized
deployment via Docker to ensure reproducibility and cross-platform compatibility.

Results: TI-Toolbox successfully automates the complete TI research pipeline, from DICOM conversion through
final field analysis. The platform demonstrates robust performance across operating systems and provides
standardized workflows that enhance reproducibility. Furthermore, our case studies support the validity of our
HD-EEG mapping approach for montage standardization and the need for individualized modeling for exposure
assessment.

Conclusions: TI-Toolbox addresses critical infrastructure gaps in TI research by providing researchers with a
unified, validated platform that reduces technical barriers and accelerates translational research in non-invasive
deep brain stimulation.

Open-source software

1. Introduction electrode pairs with a physiologically relevant offset frequency to create

focal stimulation at depth (e.g. 2.0 kHz and 2.01 kHz) (Fig. 1) [2].

Temporal interference (TI) stimulation has emerged as a promising
technique for non-invasive neuromodulation, offering better stimulation
focality when targeting deep brain structures compared to traditional
transcranial electrical stimulation (tES) modalities [1]. Unlike conven-
tional tES methods that predominantly affect superficial cortical re-
gions, TI employs kilohertz-frequency -carriers through multiple

While early hypotheses proposed that neurons would only respond to
the beat frequency due to their intrinsic low pass filtering, recent evi-
dence suggests that neurons are affected by kilohertz-frequency stimu-
lation through direct membrane polarization, with stimulation
thresholds increasing with frequency [3-5]. Though there is not yet an
established mechanistic explanation, the neural response to TI likely
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involves a non-linear process [6,7]. Recent reviews provide compre-
hensive listings of emerging TI studies [8-10] with preclinical studies
demonstrating successful modulation of hippocampal activity and motor
cortex functions [11,12] while human studies report effects on
improvement of working memory, reduction of epileptic biomarkers,
and enhancement of slow wave activity during sleep [5,13,14].

While researchers are actively working to decipher the neural
mechanisms of TI at the microscopic level, modulation of the central
nervous system critically depends on the electric field strength and likely
its orientation relative to the neural tissue in line with more traditional
tES interventions [15,16]. Therefore, knowing the electric field expo-
sure is essential for planning rigorous clinical studies. Some studies take
advantage of depth electrodes for cohorts that have surgical implants,
which allows field distribution to be assessed directly and tuned towards
the desired target [5,17]. However, in most human studies, participants
do not have implanted electrodes, making it impossible to directly
measure the brain's exposure to TI stimulation.

To address this challenge, in-silico simulations offer a powerful, non-
invasive solution which enables researchers to estimate field exposure
across the entire head with high spatial resolution, under controlled and
reproducible conditions [18]. These simulations are well-suited for
conducting experimental manipulations, optimizing stimulation pro-
tocols, and minimizing possible risk to participants [19,20]. Several TI
tools exist, including commercial solutions [21-24] and open-source
alternatives [25-27]. In practice, however, existing solutions remain
fragmented, often requiring researchers to assemble custom pipelines, or
proving inaccessible due to steep learning curves or high licensing costs
[8]. This fragmentation poses significant challenges for establishing
standardized workflows and hinders the broader clinical application of
in-silico TI modeling.

Here, we introduce TI-Toolbox, an open-source platform that offers a
comprehensive, integrated, end-to-end solution designed to tackle the
key challenges in clinical TI research. The platform combines estab-
lished neuroimaging tools within a unified framework specifically
designed for TI applications, offering automated workflows from raw
magnetic resonance imaging (MRI) data through optimized stimulation
protocols and detailed field analysis (Fig. 2). TI-Toolbox aims to
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promote access to advanced TI modeling by unifying preprocessing,
optimization, simulation, analysis and visualization within a single
framework that promotes computational ease of use, reproducibility,
and methodological standardization across the research community.

Using TI-Toolbox, we sought to answer multiple concerns that the
field has been debating: (Q1) Does mapping optimal montages obtained
through unconstrained genetic optimization onto standard high-density
EEG (HD-EEG) nets alter electric field characteristics [28,29]? (Q2) Does
a personalized model for montage optimization provide a meaningful
advantage over using a montage derived from a generalized model [30]?
(Q3) Can demographic or anatomical factors explain inter-individual
variability in TI exposure? To answer these questions, we evaluated
three ROIs: the left insula, the right hippocampus, and a spherical ROI
centered at MNI coordinates (36.10, 14.14, 0.33) with radius 5 mm,
while assessing the intensity, direction, and focality of the maximal
modulation vector field. Understanding the appropriateness of electrode
placement discretization via EEG nets and the usage of generic head
models for montage optimization has the potential to improve clinical
trial design and support reproducibility.

2. Methods
2.1. Overview

The TI-Toolbox is organized into four main components: pre-
processing, optimization, simulation, and analysis (Fig. 2). The modules
are designed to operate in a linear sequence, with standardized data
structures and outputs enabling reproducibility across stages. The pre-
processing module generates subject-specific head models from raw MRI
data via automated DICOM conversion, surface reconstruction, and
finite element meshing. The optimization module determines effective
electrode montages fitted to the subject anatomy and a stimulation
objective, supporting both genetic and exhaustive algorithms. The
simulation module computes subject-specific electric fields and TI en-
velopes, with support for directional field components, multi-polar TI,
and customizable electrode montages. The analysis module extracts
region-wise metrics and generates visualizations through either surface
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Fig. 1. Temporal and spatial characteristics of temporal interference (TI) field distribution. A. Central brain region showing maximal modulation amplitude where TI
envelope (Af) dominates over high-frequency (HF) carrier components (HF;,HF,). B. Superficial cortical area demonstrating minimal modulation with dominant HF; carrier
activity. C. Three-dimensional head model illustrating electrode montage with HF; (carrier frequency; red), HF, (carrier frequency + Af; blue), and the calculated T, vectors
(green). Vector fields reflect the electric-field magnitude and direction at each gray-matter surface element, obtained by averaging the field contributions from the three nodes

defining each triangular facet.
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A. Pre-processing

B. Optimization

- Exhaustive Search

- Multiple leadfield options
- Flexible search (genetic)
- Mapping functionality

- DICOM to NIfTI Conversion
- FEM creation (CHARM)

- Atlas and Net registration
- Tissue Analysis
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D. Analysis &
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- ROI extraction
- Envelope direction

- Uni / Multipolar paradigms
- Electrode geometry

- Current intensity

- Multiple EEG nets

- Voxel space analysis

- Mesh space analysis

Fig. 2. TI-Toolbox integrated computational pipeline. A. Preprocessing module: DICOM-to-NIfTI conversion via dcm2niix, FreeSurfer recon-all cortical reconstruction, and
SimNIBS's charm for finite element method (FEM) head model generation. B. Optimization algorithms: flex-search genetic algorithm and exhaustive search approaches for
electrode montage determination with region-of-interest (ROI) targeting. C. Simulation engine: magnitude and direction computation of Tl.y. D. Analysis and visualization:
ROI extraction, and mesh/volumetric output generation compatible with Gmsh and Freeview.

(mesh) or volumetric (voxel) evaluation pipelines, with outputs view-
able in Gmsh [31] (mesh) and Freeview [32] (voxel), and with optional
cohort-level exports in MNI space.

Each component is accessible through both a command line interface
(CLI) and a PyQt5-based graphical user interface (GUI) [33,34].
Containerization via Docker [35] ensures reproducibility [36] and
simple orchestration of external dependencies across operating systems
(Fig. 3).

2.2. Prerequisites

To utilize TI-Toolbox, users must provide anatomical MRI data in
DICOM format, with at least a T1l-weighted sequence required for
structural processing. The inclusion of T2-weighted images is recom-
mended to improve tissue segmentation accuracy, and diffusion-
weighted imaging (DWI) data may be supplied for the computation of
directional conductivity tensors for running anisotropic simulations.

The platform is compatible with Windows, Linux, and macOS oper-
ating systems via Docker-based containers running Ubuntu. Docker (or
Docker Desktop) is the only required local installation; all other de-
pendencies are encapsulated within the containerized environment.

Access to the graphical user interface requires X11 forwarding across
all operating systems. For standard usage, a minimum of 32 GB RAM is
recommended. Installation instructions and a detailed usage guide are
available in the project's website [37].

Once prerequisites are installed, the correct Brain Imaging Data
Structure (BIDS) formatting should be provided for the rest of the tools
to work properly. Specifically, the user needs to set up their sourcedata

sub-directory with either raw DICOMs or NIfTI files. The rest of the
required files are generated automatically as the user moves through the
TI-Toolbox (Fig. 3B). To facilitate immediate use and learning, TI-
Toolbox natively ships with the Ernie's T1-weighted and T2-weighted
scans from previous work [27] and MNI152 data [38].

2.3. Core components and implementation

2.3.1. Preprocessing pipeline

The preprocessing module orchestrates a workflow that transforms
raw MRI data into simulation-ready head models through three primary
stages: DICOM conversion, cortical reconstruction, and finite element
method (FEM) model creation.

DICOM to NIfTI conversion is performed using dem2niix [39], which
consolidates DICOM series into volumetric images. This process pro-
duces outputs compliant with the BIDS for compatibility with down-
stream workflows.

Structural processing leverages FreeSurfer's recon-all pipeline [32]
through the recon-all function, which performs cortical reconstruction
including tissue segmentation, surface extraction, and automatic par-
cellation using standard atlases. The implementation supports both se-
rial and parallel execution modes, with the parallel mode utilizing GNU
Parallel [40] for efficient multi-subject processing.

Head model generation employs SimNIBS's charm function [41] for
creating detailed FEM models. When both T1 and T2 images are avail-
able, charm utilizes multi-modal information for improved tissue seg-
mentation accuracy. As part of the charm command, multiple 10-20 and
high-density electroencephalogram (HD-EEG) nets are co-registered
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A. Toolbox Interface

Subject(s) Simulation Configuration

101 Simulation Type: Isotropic
Change Default Conductivities I

EEG Net: EGI_template.csv >

Simulation Type: (@) Montage Simulation

Flex-Search Simulation
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Fig. 3. TI-Toolbox software architecture and containerized deployment. A. Unified interface providing graphical user interface (GUI) and command-line interface (CLI)
access for workflow orchestration. B. Brain Imaging Data Structure (BIDS)-compliant project directory organization showing sourcedata/, derivatives/, and standardized file
hierarchy. C. Multi-layered deployment architecture: host operating system supporting Docker containerization with launcher program managing SimNIBS and FreeSurfer

dependencies through isolated container environments.

with the head model via non-linear transformation from Montreal
Neurological Institute (MNI) to subject space (Fig. 2A and S9). All steps
incorporate comprehensive error handling, generate timestamped logs,
and sharable HTML reports (section 2.4).

Following FEM model creation, a dedicated tissue analysis script
estimates cortical bone morphology, ventricular and subarachnoid ce-
rebrospinal fluid (CSF), and skin characteristics, producing subject-level
metrics (Fig. 8A and B). These metrics are exported alongside pre-
processing reports and can serve as covariates for downstream inter-
individual variability analyses (Section 2.6.4).

2.3.2. Optimization algorithms

The optimization module implements two complementary ap-
proaches addressing the unique challenges of multi-electrode, multi-
objective optimization in TI stimulation:

Flex-Search Algorithm: Built upon SimNIBS's TesFlexOptimization
class [42], this module implements a leadfield free adaptive genetic
algorithm. Flex-Search iteratively evolves electrode montages by simu-
lating montages, evaluating the resulting electric field in a specified ROI
based on a user-defined goal, and mutating to improve solutions over

generations. The flex-search allows for easy and intuitive configuration
of optimization parameters including goal selection (mean field,
maximum field, or focality), post-processing options (TIyax, dir_TI,ormals
or dir_TIiangentia), and electrode dimensions. For focality optimization,
the algorithm seeks to maximize field intensity within the target region
while minimizing field spread in a region defined as non-ROI. This is
achieved by setting thresholds in which the ROI should exceed, and
non-ROI should be kept below. This approach promotes spatial selec-
tivity by explicitly penalizing widespread field distributions, making
threshold selection a critical parameter that determines which brain
regions are considered activated during optimization (Fig. S3). To
mitigate local optima, the tool supports a multi-start strategy in which
the optimizer is launched multiple times with distinct seeds; users can
specify the number of runs and automatically retain the best montage
across starts. While the multi-start approach consistently improves tar-
geting performance, the gains are typically modest (Fig. S1).

The algorithm supports three distinct ROI definition methods
through helper functions. The spherical approach enables definition of
spherical ROIs with customizable center coordinates and radii, ideal for
targeting specific anatomical landmarks. The atlas based approach
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interfaces with cortical atlases (Desikan-Killiany, Destrieux, HCP-
MMP1) [43-45] to target specific cortical regions by label. The
sub-cortical approach extends targeting capabilities to volumetric
subcortical structures using the charm labeling.nii.gz output. The
implementation also provides control over hyper-parameters including
maximum iterations, population size, and CPU core utilization for per-
formance tuning.

The electrode mapping functionality utilizes an optimal assignment
algorithm to project unconstrained optimization solutions onto standard
EEG montages. The method constructs a Euclidean distance matrix be-
tween the optimized electrode positions and available positions from co-
registered EEG nets. The Hungarian algorithm via scipy.optimize.line-
ar_sum_assignment then solves the bipartite matching problem to
minimize total assignment distance while ensuring a one-to-one map-
ping between optimized and standard positions (Fig. 4A and S5)
(Table S1).

Local Search Algorithm: The module relies on a pre-computed
leadfield and performs systematic evaluation of montages through car-
tesian product operations, ensuring a logical balance between coverage
of the search space and compute efficiency (Fig. 2B top). Critically, the
ex-search algorithm includes per-channel current optimization as a de-
cision variable, systematically evaluating current ratios, ensuring
comprehensive exploration of both electrode positions and current dis-
tributions. Results are stored in a.csv file that includes intensity and
focality metrics for the user to inspect (Table S2).

The local search evaluates possible electrode montages and current
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distributions according to:

4
Ntotal = Nelec'Ncurrent

where: Ngje. is the number of electrode candidates per position, N‘e‘lec

accounts for selecting electrodes at four positions E, E7, EJ, and E; and
Neurrent 1S the number of current ratio combinations.
Valid current combinations satisfy:

- . Il + Ig = Itotal
Neurrent = {(117 IZ) . Istep <TIi,Iz < Limit }

2.3.3. Simulation engine

The simulation module offers a robust control over simulation pa-
rameters which interfaces with SimNIBS's sim_struct.SESSION class to
configure parameters like anisotropy type (scalar, volume normalized,
directional), electrode geometries, and current delivery.

For TI calculation, the module leverages SIimNIBS internal functions
to compute individual electric fields for each carrier frequency pair.
These fields are then processed through the TI utils.get maxTI() func-
tion, which implements the formula suggested by Grossman et al., 2017
[1].

In addition to TIpay, which is defined as the maximum envelope
modulation vector, a surface-aligned normal component (Tlyormal) iS
computed from the local Tly,ax vector onto the middle layer of the gray-
matter surface (Fig. 4C). Both Tlyax and Tl,orma are exported and

sub37 - Emie

Pial

GM

WM

Fig. 4. Target definition and optimization objectives for case studies. A. Electrode mapping functionality demonstrating unconstrained optimization to standard high-
density electroencephalography (HD-EEG) net projection using Hungarian algorithm for optimal electrode assignment. B. Head model comparison between subject-specific
anatomical models (subjects 1-36) and generalized template (Ernie model, subject 37). C. Vector illustrations: Tlyq, (maximal modulation) and Tlhoma (surface-aligned
normal component) vectors relative to the middle layer surface of the gray matter. D. Target regions: left insula (cortical, red), right hippocampus (subcortical, yellow), and
spherical ROI (green) at Montreal Neurological Institute (MNI) coordinates (36.10, 14.14, 0.33) with 5 mm radius, representing diverse anatomical targeting scenarios. The
hippocampus originates from voxel-based volumetric segmentation (aseg) while the insula (DKT atlas) and the spherical targets are surface based. Magnified panels depict re-

oriented and zoomed views of each ROI to highlight their morphology.
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analyzed downstream as part of the analyzer tool.

Output management includes generation of both volumetric and
surface-mapped results, with automatic conversion to MNI space for
group-level analyses and visualizations. The module creates visualiza-
tion files compatible with Gmsh and Freeview, facilitating immediate
inspection of simulation results in mesh and voxel spaces.

Additionally, the platform implements multi-channel TI approach for
montages that involve more than two electrode pairs (multi-polar TI)
[46] This extension supports emerging TI stimulation paradigms that
utilize more than two channels to achieve enhanced spatial selectivity,
steering, or multi-target stimulation (Fig. S2). For multi-polar TI, the
maximal modulation vectors (TI,y) from TI4 and TIg are fed back into
Grossman's analytical formula to find the TIpp vector.

For reproducibility and batch processing, all electrode montages are
saved to and loaded from a centralized montage database montage_list.
json that maintains both unipolar and multipolar montage definitions
for various EEG cap systems.

High-Frequency Field Assessment: The simulator outputs detailed
analysis of the individual carrier fields before interference calculation. A
summary statistics file documents key metrics including mean,
maximum, and percentile values for each carrier field within gray
matter. Specific Absorption Rate (SAR) can be derived from this output
according to the safety recommendations from Cassara et al., 2025 [19,
20] which will be integrated in future version of the TI-Toolbox.

All outputs maintain consistent naming conventions incorporating
subject identifiers, target names, and field types, facilitating automated
processing in downstream pipelines. The modular output structure
supports selective export based on computational resources and
research needs, with options to disable specific output types through
configuration parameters.

2.3.4. Analysis and visualization

The analysis module provides tools for quantifying and visualizing TI
stimulation outcomes through the MeshAnalyzer class. This class im-
plements three primary analysis modes: spherical ROI analysis, cortical
region analysis, and whole-head analysis. The spherical analysis method
utilizes SimNIBS's mesh manipulation functions to extract field values
within specified coordinates and radii. For cortical analysis, the class
interfaces with multiple anatomical atlases through SimNIBS's sub-
ject_atlas() function, supporting Desikan-Killiany, Destrieux, and HCP-
MMP1.

A surface mesh generation pipeline calls the msh2cortex utility to
project volumetric field data onto the middle layer of the cortex. This
enables accurate analysis of field distributions in gray matter while ac-
counting for cortical folding patterns (Fig. 2D top). Visualization capa-
bilities are implemented through the MeshVisualizer class, which
generates multiple output formats including 3D mesh visualizations
with customized colormaps (viewable in Gmsh), ROI weighted field
distribution histograms, and region-wise scatter plots.

For volumetric analysis, the VoxelAnalyzer class provides comple-
mentary functionality for analyzing field distributions in NIfTI format.
This includes both spherical and atlas-based ROI extraction which can
be inspected in Freeview (Fig. 2D bottom).

Group-level analysis enables collection and comparison of TI simu-
lation results across multiple subjects. This module generates averaged
volumetric field distributions in NIfTI format, producing inter-subject
comparison plots, and exporting summary statistics across the cohort.
Group level analysis remains in subject space for cortical and sub-
cortical regions while arbitrary spherical targets are defined in MNI
space and automatically transform into each subject's native space using
SimNIBS 'mni2subject_coords' method.

Beyond these built-in routines, the TI-Toolbox also provides utilities
for exporting cortical surfaces and field distributions for use in external
3D modeling environments such as Blender [47]. Subject-specific
cortical surfaces generated during preprocessing can be exported
either as.stl files for geometric visualization or as.ply surfaces that retain

Brain Stimulation 19 (2026) 103016

both cortical geometry and corresponding TI field magnitudes. The
TI-Toolbox also supports exporting surface-aligned 3D vector repre-
sentations of the different fields, allowing direction and intensity in-
formation to be visualized directly on the cortical surface in external
rendering tools. These export features were used to produce the
surface-based figures presented in this work.

2.4. Standardization and reproducibility

TI-Toolbox aims to ensure complete reproducibility and standardi-
zation across clinical research workflows. The platform's logging infra-
structure provides consistent formatting and hierarchical logging across
all components. The logger creates timestamped log files following the
pattern [YYYY-MM-DD HH:MM:SS] [module name] [level] message,
ensuring precise tracking of all operations.

The logger communicates with external dependencies including
SimNIBS, and FreeSurfer, redirecting their outputs through the plat-
form's unified logging system. This integration ensures that all pro-
cessing steps, regardless of their origin, are captured in a single,
searchable log file stored in the BIDS-compliant [48] directory structure.
A complimentary feature creates HTML reports that summarize key
processes and outcomes similar fMRIPrep [49], documenting aspects of
the pipeline.

2.5. Deployment and infrastructure

2.5.1. Docker compose

TI-Toolbox's deployment architecture leverages Docker Compose
orchestration to manage a complex ecosystem of neuroimaging tools
while ensuring consistent behavior across diverse computing environ-
ments. The docker-compose.yml configures the primary service con-
tainers: Core (4+SimNIBS), FreeSurfer, connected through a dedicated
bridge network (Fig. 3C).

Volume management is handled through named Docker volumes
that persist software installations across container restarts, significantly
reducing startup times. The LOCAL_PROJECT _DIR environment variable
enables flexible data mounting, allowing users to process data stored
anywhere on their filesystem while maintaining isolation between the
host and container environments.

2.5.2. Launcher program

TI-Toolbox implements several deployment strategies to accommo-
date different use cases:

Desktop Deployment: The executable launcher provides platform-
specific binaries created through Electron [50]. The launcher includes
error handling providing user-friendly feedback for common issues such
as Docker daemon availability and permission errors. The launcher re-
quires no technical expertise or an extensive installation process - users
simply download the file from the release page [37], double-click to
install, and launch the GUI Docker Desktop installation is similarly
straightforward.

Server Deployment: The bash-based launcher loader.sh implements a
deployment script that handles the setup necessary for healthy operation
of the TI-Toolbox. The bash entry point provides a solution for headless
servers processing and can be used as a desktop alternative to the
executable approach.

2.5.3. Batch processing and parallelization

TI-Toolbox implements batch processing and parallelization strate-
gies to enable efficient analysis of large clinical cohorts. The platform's
parallelization architecture operates at multiple levels, from individual
processing steps to cohort-wide analyses.

Subject-Level Parallelization: The preprocessing pipeline imple-
ments GNU Parallel integration [40] for concurrent processing of mul-
tiple subjects. When invoked with the parallel flag, the system
automatically detects available CPU cores and distributes subjects across
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parallel workers.

Algorithm-Level Parallelization: The flex-search optimization mod-
ule supports multi-core execution through the CPUs parameter, which is
passed directly to SimNIBS's differential evolution optimizer for faster
processing.

Pipeline-Level Batch Processing: The GUI employs multi-threading to
keep the interface responsive while long-running jobs are carried out in
background worker threads. A job queue coordinates preprocessing,
optimization, simulation, and analysis tasks, with real-time progress
reporting, log streaming, and graceful cancellation. This design allows
concurrent execution of independent stages across subjects while pre-
serving deterministic logging and outputs.

TMUX Parallelization: The code container which is exposed to the
user interaction comes with TMUX [51] installed which enables further
multiplexing where the user can span multiple instances of the
TI-Toolbox simultaneously.

System Monitoring: To monitor the system during high-demand
processes, a designated System Monitor tab is available that tracks
CPU and memory usage of the TI-Toolbox processes in real time.

2.6. Case studies

2.6.1. Targets and goals

Using the flex-search optimization algorithm, we evaluated three
distinct brain targets (Fig. 4D) with specific optimization objectives. For
the left insula based on DKT atlas [43] (deep cortical target) we per-
formed two optimization rounds: (1) Tl .x optimization maximizing the
mean field intensity within the ROIL, and (2) Tlyoma Optimization
maximizing the mean surface-aligned normal component within the
ROL. Both approaches focused on mean rather than maximum values to
promote homogeneous field distributions across the target region,
avoiding hotspots that may be more suitable for sub-regions (Fig. S7).
Then, for the right hippocampus based on FreeSurfer's aseg tool [32]
(subcortical target): we optimized for Tl .y, maximizing the mean field
intensity within the ROI. Given that it is a sub-cortical target, we focused
solely on intensity optimization without additional directional con-
straints as subcortical structures lack the systematic columnar organi-
zation of cortex. Lastly, for the spherical ROI (centered at MNI
coordinates 36.10, 14.14, 0.33; radius 5 mm): We implemented three
distinct optimization strategies: (1) mean optimization maximizing the
mean Tl ,x intensity within the ROIL, (2) focality optimization maxi-
mizing the ratio between mean Tl in the ROI versus mean Tlp,x in
gray matter using various thresholding approaches, and (3) max opti-
mization maximizing the maximum value of the TI,oma component
within the ROL For the complete target x goal combination diagram
please see Fig. S6 in the supplementary information.

2.6.2. Subjects

We collected MRI scans of thirty-six participants (mean age = 29.9
+ 9.7 years, 58.3 % Female) from the STRENGTHEN clinical trial
(Table S4). Participants were excluded if they had any neuroradiologist-
identified brain structural abnormalities. All participants gave written
informed consent in accordance with the University of Wisconsin-
Madison Institutional Review Board. MRI data were collected using a
3 T MAGNUS (Microstructure Anatomy Gradient for Neuroimaging with
Ultrafast Scanning, GE Healthcare) head-only MRI scanner. Structural
images were acquired using T1-and T2-weighted images, with 0.8 mm
isotropic voxels, and the following parameters. T1-weighted: sequence
= MP-RAGE (Magnetization-Prepared Rapid Gradient-Echo), repetition
time (TR) = 2000 ms, echo time (TE) = 3 ms, inverse time (TI) = 1100
ms, flip angle = 8, field of view (FOV) = 256 x 256 mm2, matrix size =
320 x 320 pixels, resolution = 0.8 mm x 0.8 mm x 0.8 mm, number of
slices = 240, acquisition time = 4 min. T2-weighted: sequence = CUBE-
T2, TR = 2500 ms, TE = 90 ms, echo train length (ETL) = 120, FOV =
256 x 256 mm2, matrix size = 320 x 320 pixels, resolution = 0.8 mm x
0.8 mm x 0.8 mm, number of slices = 240, acquisition time = 4 min. Our
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37th participant which serves as our generalized model is the publicly
available Ernie model.

2.6.3. Flow

Raw DICOM files were preprocessed as in Section 2.3.1. For each
target and objective, we ran the flex-search optimizer with the ROI
definitions in Section 2.6.1, using a three-run multi-start configuration
and retaining the best solution per subject (configurable via Advanced
Settings: Number of Optimization Runs). We tested 1, 3, and 5 multi-
starts on the entire cohort for the hippocampus target. The improve-
ment plateaued after 3 starts, leading us to select 3 as optimal balance
between performance and computation time (Fig. S1). Notably, we
chose to follow the hyper-parameter suggested by Weise et al., 2025
during our optimization process; popsize = 13, tol = 0.1, mutation=
(0.01,0.5), recombination = 0.7 [42,52].

To address Q1, we performed two simulations for each combination
of subject, target, and optimization goal: one using the freely optimized
montage and another using the HD-EEG mapped montage (Fig. 5). For
Q2, we first optimized montages on the general head model (Ernie) for
each target-goal combination, then applied these general montages to all
individual subjects. We subsequently compared the performance of
these general model montages against individually optimized montages
to assess the impact of head model individualization on TI optimization
outcomes (Fig. 6). Our simulation utilized default isotropic conductiv-
ities [53-55] (Table S3), 1 mA per channel, 8 mm electrode diameter, 4
mm thick saline gel and a 2 mm thick rubber electrode on top. Finally,
we applied group analysis to extract Tlnax, Tlhormal, and focality within
ROIs and gray matter.

For focality optimization, we evaluated three distinct thresholding
strategies to assess their impact on spatial selectivity. We compared: (i)
fixed absolute thresholds (0.1 V/m and 0.3 V/m) based on similar field
strengths reported in the literature [2,42], (ii) adaptive threshold at 50
% of achievable peak field intensity, and (iii) adaptive threshold at 80 %
of achievable peak field intensity. For adaptive approaches, a two-pass
optimization strategy was employed: first, a mean Tl ,x optimization
determined the achievable field intensity in the target ROI; second, a
focality optimization informed by achievable values. The lower
threshold was set at a constant 20 % of the achievable intensity while the
upper threshold was set at the specified percentage (50 % or 80 %). This
adaptive strategy ensures that focality constraints are tailored to indi-
vidual head geometry and target location rather than applying poten-
tially inappropriate fixed values that may lead a lower achieved
objective value. After optimization and simulation steps were
completed, we used the analyzer tools to assess field exposures in the
model according to:

ROI

1 , N
TIR! =X > Tl (j) Focality = o

mean GM
jeROI mean

Where TIn.(j) is the TI modulation amplitude at mesh element
jand TISM  follows the same formulation as TIRO! with ROI being the

entire gray matter.

2.6.4. Statistical analysis

Statistical analyses were conducted using Python with scipy, stats-
models, and pandas libraries. Data normality was assessed using the
Shapiro-Wilk test scipy.stats.shapiro, with parametric paired t-test via
scipy.stats.ttest_rel or non-parametric Wilcoxon signed-rank test via
scipy.stats.wilcoxon approaches selected based on normality test results
(p > 0.05 indicating normal distribution. To control for multiple com-
parisons, we employed the Benjamini-Hochberg (BH) false discovery
rate (FDR) correction procedure [56]. Within each research question (e.
g., optimized vs. mapped stimulation, Ernie vs. mapped stimulation), all
p-values from primary, parametric, and nonparametric tests across all
variables were grouped as a single family for correction, with each
question corrected independently. Significance levels are reported as
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Fig. 5. Comparison of optimized versus mapped electrode montages. A. Within-subject comparison for left insula of TI,ax characteristics between ‘optimized’ and
‘mapped’ conditions: mean Tl = 0.324 vs 0.319 V/m (A = —1.33 %, p = 0.047), maximum TI,x = 0.470 vs 0.464 V/m (A = —1.26 %, p = 0.083), focality
preserved (A = 0.18 %, p = 0.609). B. Spherical target results: mean TIn.x reduction of —2.22 % (p = 9.58 x 10~°), maximum Tl reduction of —2.24 % (p=
0.0001), focality unchanged (p = 0.273). C. Right hippocampus analysis: mean Tl reduction of —3.53 % (p = 3.20 x 10~7), maximum T,y reduction —2.89 % (p
= 1.48 x 107), and focality reduction of —2.55 % (p = 0.0006). Colored lines connect paired observations from the same participant (green for increase, red for
decrease, gray for no change), illustrating individual response to different montage conditions (n = 37). Half violin plots show density distributions. Colored circles
represent group means with black vertical lines indicating +SD while rectangles with vertical lines indicate interquartile range (IQR). Statistical comparisons were
performed using paired t-test or Wilcoxon signed-rank test with significance denoted as: p < 0.001, p < 0.01, p < 0.05, n.s. = not significant. Effect size (Cohen's d/r)
and percentage change are displayed above each comparison. T,y are expressed as V/m.

follows: *p < 0.05, **p < 0.01, and ***p < 0.001.

Effect sizes were calculated using Cohen's d for parametric tests
(computed as mean difference divided by pooled standard deviation)

from the Wilcoxon test statistic. Practical effect sizes were reported by

Bi-A;

computing the percent change between the two groups A% =

and r (Z/ \/N) for non-parametric tests, where Z-scores were obtained == -100% and magnitude of within-subject variability as A% =
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Fig. 6. Individualized versus generalized head modeling performance. A-C. On the left, montages suggested by the generalized model (subject 37, Ernie) for the Left insula,
sphere, and right hippocampus. On the right, cortical field distribution and extracted ROI for subsequent analyses. D. Left Insula comparison: subject-specific suggested mapped
montages (red dots) versus generalized template montage (Ernie, blue dots). Individualized models achieved higher mean TIpax (+2.70 %, p = 6.51 X 10~%) and maximum
Tlmax (+3.31 %, p = 9.88 x 10™°) compared to template. E. Spherical comparison: Individualized models showed modest advantages in maximum field (+1.86 %, p = 0.006)
and superior focality (+9.3 %, p = 1.75 x 107°). F. Right hippocampus comparison in volumetric space: Comparable field intensities between approaches (mean Tl +1.21
%, p = 0.213; maximum Tlyax +2.38 %, p = 0.130) with no significant difference in focality (+0.07 %, p = 0.981). Colored lines connect paired observations from the same
participant (green for increase, red for decrease, gray for no change), illustrating individual response to different montage conditions (n = 36). Half violin plots show density
distributions. Colored circles represent group means with black vertical lines indicating +SD while rectangles with vertical lines indicate interquartile range (IQR). Statistical
comparisons were performed using paired t-test or Wilcoxon signed-rank test with significance denoted as: p < 0.001, p < 0.01, p < 0.05, n.s. = not significant. Effect size
(Cohen's d/r) and percentage change are displayed above each comparison. Tl are expressed as V/m.

‘B‘%A” -100% where A and B represent the two conditions being
compared.

For inter-individual variability analyses (Q3), we investigated
anatomical determinants of TI field exposure using data from the opti-
mized electrode montages. First, we assessed multicollinearity among
anatomical predictors (age, bone thickness/volume, CSF thickness/
volume, and skin thickness/volume) using correlation analysis. Based on
high correlations within tissue types, we selected volume measures over
thickness to reduce multicollinearity while retaining predictive infor-
mation. Volumetrics were extracted from lableing.nii.gz file produced
during subjects’ pre-processing, which thresholds the images on the Z
axis based on the top of the brainstem (Fig. 8A and B). Then, the sum of
voxels belonging to desired tissue and above said threshold were
multiplied by their volume extracted from the NIfTI header using
nibabel package [57]. We then employed multiple linear regression
(MLR) model constructed using statsmodels.api.OLS with ordinary least
squares fitting to quantify the overall variance explained by anatomical

factors TIROQL = B + B;-Age + Po-Vione + Bs-Vese + Ba- Vein + €. Model

mean

fit was evaluated using R?, adjusted R?, and F-statistics. The models were
applied separately to the left insula, right hippocampus and spherical
targets.

3. Results
3.1. Overview

We investigated TI field characteristics across three distinct brain
targets in a cohort of 37 participants. To provide useful benchmarks for
the community we compiled the typical time required for TI-Toolbox
operations and hardware load (Table 1). For the left insula (deep
cortical target), we evaluated solutions from both TI.x optimization
(maximizing mean field intensity) and TI,oma optimization (maxi-
mizing mean surface-aligned normal component). The right hippocam-
pus (subcortical target) was analyzed using TIpax optimization focused
on maximizing mean field intensity. The spherical ROI (MNI coordinates
36.10, 14.14, 0.33; radius 5 mm) was evaluated using three
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Table 1
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Components and performance of TI-Toolbox on a MacBook Pro (2023, Apple Silicon M2 Max, 32 GB RAM). Benchmark results include computation times for key

functions, memory usage, and typical workflow performance to illustrate efficiency and scalability.

Module Primary Inputs Primary Outputs Runtime per Memory Notes
Subject Peak (GB)
Preprocessing
DICOM Conversion Raw DICOM series (T1w, T2w) BIDS-compliant NIfTI files sec 0.3 single core (83.4 % CPU)
Reconstruction T1lw/T2w-weighted NIfTI Tissue segmentation, surface meshes, 3h 44m 2.2 single core (68.6 % CPU)
(recon-all) cortical parcellations
FEM Generation T1w/T2w NIfTI FEM head model (.msh), co-registered 1h 10m 8.4 multi-core (640.4 % CPU)
(CHARM) EEG nets, labeling.nii.gz
Tissue Analysis labeling.nii.gz Bone/CSF/skin metrics 24s per tissue  0.44 single core
Leadfield Generation FEM model, EEG montage definition Pre-computed leadfield matrix Variable Variable single core
EEG10-20 FEM model, Okamoto 2004 Leadfield matrix (21 electrodes) 2m 34s 2.0 electrodes, single core (97.4 %
coordinates CPU)
EEG10-10 FEM model, UI Jurak 2007 Leadfield matrix (75 electrodes) 18m 3s 7.1 electrodes, single core (92.6 %
coordinates CPU)
EEG10-5 FEM model, GSN-HydroCel-185 Leadfield matrix (183 electrodes) 46m 23s 7.4 electrodes, single core (95.1 %
coordinates CPU)
Optimization
Flex-Search (Genetic) FEM model, target ROJ, goal function, ~ Optimized electrode positions, field 40m 33s 9.7 Genetic algorithm, 3 multistarts,
opt parameters metrics single core (101.5 % CPU)
Local-Search Pre-computed leadfield, EEG CSV of montage-current combinations, Variable 4.0 Leadfield-based, single core
(Cartesian Product) candidates, current parameters, intensity/focality metrics
target ROI
2 electrodes Leadfield, electrode-current 112 evaluations 1m 27s 4.0 single core (85.2 % CPU)
combinations
4 electrodes Leadfield, electrode-current 1792 evaluations 10m 23s 4.0 single core (102.2 % CPU)
combinations
6 electrodes Leadfield, electrode-current 9072 evaluations 50m 46s 4.0 single core (100.5 % CPU)
combinations
Electrode Mapping Optimized positions, standard EEG Mapped positions to standard nets - - Post-optimization mapping
coordinates
Simulation
TI Field Computation FEM model, electrode montage, TImax/Tlhormal fields (volumetric & 11m 58s 3.4 Complete pipeline, single core
electrode/current/anisotropy surface), carrier fields, MNI outputs, (56.1 %)
parameters visualizations
Montage Electrode positions on EEG net Electrode placement visualization 2s - Electrode placement check
visualization
SimNIBS simulation FEM model, electrode montage FEM-solved electric fields (2 pairs) 8m 56s 3.4 FEM simulation
FEM assembly/ FEM model, current injection Solved electric field per pair 2m per pair - Per electrode pair
solving
Volume Surface fields, gray matter mask Volumetric gray matter field map 4m 55s - Gray matter interpolation
interpolation
NIfTI conversion Mesh fields, anatomical T1 MNI-transformed field volumes 2m 52s - MNI transformation
T1 to MNI Subject T1, MNI template Registration transformation 12s - Anatomical registration
Mesh to NIfTI Field meshes, transformation Field volumes in MNI space 2m 40s - Field volume creation
Results processing Simulation outputs Organized output files 1s - File organization
Analysis & Visualization
Mesh Analyzer Surface-mapped fields (.msh), ROI, Surface-based statistics, 3D visualizations 35s 0.44 Sphere and cortical atlases
atlas (Gmsh)
Voxel Analyzer Volumetric fields (NIfTI), RO, atlas Voxel-wise statistics, visualization 7s 0.31 Volume-based analysis, sphere
(Freeview) ROI
Group Analyzer Multi-subject TI results, MNI/subject ~ cohort statistics, MNI maps Variable - Multi-subject analysis
coordinates
System Components
Logging & Reports All module operations, pipeline Timestamped logs, HTML preprocessing/ - - Automatic documentation
execution data simulation reports
Deployment Docker Engine/Docker Desktop, user ~ Containerized environment, CLI/GUI - - Docker-based deployment
data directories (PyQt5), cross-platform compatibility
TOTAL PIPELINE Raw DICOM to analyzed TI fields Complete analysis-ready outputs 5-6h 9.7 Minimum 16 GB RAM

recommended

TI-Toolbox: Components, Inputs, Outputs, and Performance Benchmarks.

optimization strategies: mean Tl .y intensity, focality (ratio of mean

Tlyhax in ROI to gray matter), and maximum TI,orma component. All

statistical comparisons employed paired tests selected based on
normality assessments (two-tailed a = 0.05), with effect sizes and per-
centage changes calculated to evaluate both statistical and practical

significance.

3.2. Mapping optimized solutions to HD-EEG

To assess whether constraining electrode placements to standard HD-
EEG positions compromises optimization benefits, we compared field
characteristics between freely optimized montages (optimized) and

their mapped counterparts (mapped) across all three targets (n = 37,
including the generalized model subject). These analyses focus on the

10
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mean optimization results—maximizing mean TIp,,y intensity for the left
insula, right hippocampus, and spherical ROI. For the left insula, map-
ping to standard electrode positions resulted in minimal yet statistically
significant impact with mean Tlyax (—1.33 %, p = 0.047, |A| = 2.55 %,
d = —0.44) and maximum (-1.26 %, p = 0.083, |A| = 3.07 %, d =
—0.34) field metrics showing small reductions that did not reach sig-
nificance. Focality also remained unchanged 1.40 vs 1.41 (+0.17 % p =
0.609, |A| = 1.63 %, d = 0.08), suggesting that spatial selectivity was
preserved (Fig. 5A). For the spherical target, mapping decreased mean
Tlyax from 0.352 V/m to 0.344 V/m (—2.22 %, p = 9.58 x 1075, |A] =
2.73 %, d = —0.79), with maximum values showing similar reductions
from 0.388 V/m to 0.380 V/m (—2.25 %, p = 0.0001, |A| = 2.86 %, d =
—0.74). However, focality remained statistically unchanged 1.541 vs
1.548 (+0.505 %, p = 0.273, |A| = 2.06 %, d = 0.19), reinforcing that
electrode mapping preserves targeting precision (Fig. 5B). The right
hippocampus demonstrated stronger sensitivity to the mapping effect
which may be due to the increase mapping distance (Fig. S5) where
mean TIp,.y values decreased from 0.316 V/m in optimized solutions to
0.305 V/m when mapped (—3.54 %, p = 3.20 x 1077, |A| =3.77 %, d =
—1.09), and maximum values decreased from 0.510 V/m to 0.495 V/m
(—2.89 %, p = 1.48 x 1079, |A| = 3.21 %, r = 0.74). Focality also
showed a small but statistically significant reduction from 1.526 to
1.487 (—2.55 %, p = 0.00064, |A| = 3.56 %, r = 0.54), indicating
modest compromise in spatial selectivity for this deeper target (Fig. 5C).
Overall, these findings demonstrate that constraining electrode place-
ments to HD-EEG positions resulted in minimal reductions in field in-
tensity across all targets (1-4 %), with focality preserved for cortical and
spherical targets, establishing standard HD-EEG montages as a practical
solution for TI stimulation without substantially compromising optimi-
zation benefits.

3.3. Individualized versus generalized montages

Next, we examined whether a montage optimized on a personalized
model provides meaningful advantages over using a consistent montage
found via optimization on a generalized head model (Ernie model).
Importantly, all simulations used the individualized head models for
field calculation. To avoid self-comparison, the generalized model sub-
ject was excluded from these analyses (n = 36). For the left insula,
individualized models with mapped electrodes achieved higher field
intensities than the generalized model, with mean Tl of 0.321 V/m
versus 0.312 V/m (+2.70 %, p = 6.51 x 1075, |A| = 3.00 %, d = 0.94)
and maximum values of 0.464 V/m versus 0.450 V/m (+3.31 %, p =
9.88 x 107>, |A| = 4.28 %, d = 0.75). Focality showed no significant
difference between approaches 1.412 vs 1.413 (+0.05 %, p = 0.93, |A|
= 3.21 %, r = 0.026) (Fig. 6A-D). The right hippocampus revealed a
comparable field intensity between individualized and generalized
models. Mean T,y values were virtually identical 0.305 vs 0.302 V/m
(+1.21 %, p = 0.213, |A| = 3.79 %, d = 0.26), as well as the maximum
values 0.497 vs 0.486 V/m (+2.38 %, p = 0.130, |A| = 5.81 %, d =
0.35). Focality showed no significant difference between approaches
1.489 vs 1.488 (+0.07 %, p = 0.98, |A| =5.09 %, r = 0.005), suggesting
comparable spatial selectivity for this deep target (Fig. 6C-F). For the
spherical target, individualized models showed no advantages in field
intensity where mean values 0.345 vs 0.339 V/m (+1.866 %, p = 0.006,
|A] =3.12%, d = 0.50) and max values 0.381 vs 0.372 V/m (+2.42 %, p
= 0.006, |A| = 3.87 %, d = 0.48). Notably, individualized models
achieved substantially better focality compared to the template 1.555 vs
1.420 (+9.29 %, p = 1.75 x 1077, |A| = 9.57 %, r = 0.84), indicating
superior spatial selectivity when targeting small regions (Fig. 6B-E).
Collectively, these findings indicate that personalized montage optimi-
zation provides modest but significant advantages over applying a
consistent montage found via optimization on a generic model for the
left insula (2-3 % higher intensity) and spherical target 9 % better
focality, while the right hippocampus showed comparable performance
between approaches, suggesting that individualized montage
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optimization may be particularly valuable for precise focal targeting but
less critical for deep subcortical structures.

3.4. Surface-aligned field components

Given the importance of field orientation relative to cortical geom-
etry [15,58,59], we assessed the impact of mapping and generalization
described before (sections 3.3 and 3.4) on the normal component of
Tlhax (TIhormal) for cortical targets. Comparing mapped to optimized
montages for the left insula, mean Tl;orma decreased from 0.226 V/m to
0.216 V/m (-4.24 %, p = 1.10 x 1078, |A] = 4.37 %, d = —1.28), with
maximum values showing similar reductions from 0.402 V/m to 0.394
V/m (—1.86 %, p = 0.024, |A| = 4.02 %, d = —0.42). Normal focality
remained statistically unchanged 2.265 vs 2.244 (—0.91 %, p = 0.117,
|A] = 2.50 %, r = 0.26), suggesting preserved directional selectivity
despite electrode constraints (Fig. 7A). For the spherical target (using
the max optimization that maximized TI,ormal), comparable sensitivity
of the normal component to electrode mapping was observed, with
mean values decreasing from 0.201 V/m to 0.192 V/m (—4.66 %, p =
1.66 x 1075, |A| = 5.60 %, Cohen's d = —0.88) and maximum values
from 0.351 V/m to 0.343 V/m (A = —0.0073 V/m, —2.09 %, p = 0.006,
|A| = 3.27 %, d = 0.46). Normal focality showed no reduction for the
mapped condition 2.025 vs 1.983 (—2.05 %, p = 0.06, |A| = 5.06 %,
Cohen's d = —0.31) (Fig. 7C). When comparing individualized mapped
montages to the montage suggested by a generalized model, the left
insula showed no difference in mean TI,orma 0.217 V/m for mapped vs
0.216 V/m for Ernie (+0.27 % p = 0.647, |A| = 2.24 %, d = 0.09),
though individualized models achieved higher maximum values 0.396
vs 0.382 V/m (+3.52 %, p = 0.002, |A| = 5.30 %, d = 0.55) at the cost of
reduced focality 2.241 vs 2.342, (—4.31 %, p = 0.003, |A| = 5.30 %, r =
0.56) (Fig. 7B). The spherical target demonstrated more pronounced
differences, with individualized models showing lower mean Tlorma)
0.191 vs 0.220 V/m (—13.08 %, p = 0.0002, |A| = 15.50 %, r = 0.65)
but higher maximum values 0.344 vs 0.332 V/m (+3.74 %, p = 0.0002,
|A] = 4.78 %, r = 0.67) and substantially reduced focality 1.971 vs
2.293 (—14.01 %, p = 0.0003, |A| =17.01 %, r = 0.63) (Fig. 7D). Taken
together, these findings indicate that surface-aligned normal field
components showed similar sensitivity to electrode mapping as Tlyax
metrics (2-5 % reductions), with preserved focality, while comparisons
between individualized and generalized models revealed complex
trade-offs between intensity and focality.

3.5. Determinants of inter-individual variability

To identify anatomical and demographic factors underlying inter-
individual variability in TI field exposure, we analyzed data from the
optimized electrode montages across all targets. Initial correlation
analysis revealed strong within-tissue correlations (Fig. S4), with bone
thickness and volume showing correlations exceeding r = 0.9, and
similar patterns for CSF and skin measures. Based on this multi-
collinearity assessment, we selected volume measures over thickness
measures for subsequent analyses as described in section 2.6.4. To
quantify the overall variance explained by anatomical factors, we per-
formed MLR analyses with age, CSF volume, bone volume, and skin
volume as predictors of mean Ty« in the three ROIs. For the left insula,
these anatomical features collectively explained 46.9 % of the variance
in field intensity (R? = 0.469, adjusted R = 0.400, F = 6.833, p = 4.59
x 10™%), indicating substantial predictive power. Individual predictors
showed that bone volume ( = —0.000430, p = 0.0024) and skin volume
(B = —0.000600, p = 0.0248) were significant predictors of field in-
tensity, while CSF volume (p = —0.000113, p = 0.5227) and age (p =
—0.000134, p = 0.8315) showed no significant associations. The right
hippocampus model showed comparable explanatory power, with
anatomical features accounting for 41.1 % of variance (R? = 0.411,
adjusted R = 0.335, F = 5.411, p = 2.01 x 10~°). Similarly, bone
volume (f = —0.000314, p = 0.0166) and skin volume (p = —0.000574,
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Fig. 7. Surface-aligned normal component (TIormq) analysis for cortical and spherical targets. A. Left insula comparison between optimized and mapped electrode montages
for Tlhorma field component (optimization goal: maximize mean Tlnomay). Mean values decreased from 0.226 to 0.216 V/m (4 = -4.24 %, p = 1.10 x 10~8), while focality
remained preserved (p = 0.117). B. Left insula comparison between individualized mapped montages and generalized model (Ernie) for Tl,oma (optimization goal: maximize
mean Tlhoma). No significant difference in mean values (0.216 V/m for both, p = 0.647), though individualized models achieved higher maximum values (4+3.52 %, p =
0.002) with reduced focality (-4.31 %, p = 0.0002). C. Spherical target comparison between optimized and mapped montages for Tlnorma (optimization goal: maximize
maximum Tlyorma). Mean values decreased from 0.201 to 0.192 V/m (A = -4.66 %, p = 1.66 x 1075), with non-significant focality reduction (p = 0.06). D. Spherical target
comparison between individualized and generalized models for Tl,orma (optimization goal: maximize maximum Tlopmq). Individualized models showed lower mean values
(0.191 vs 0.220 V/m, -13.08 %, p = 0.0002) but higher maximum values (+3.74 %, p = 0.0002) with substantially reduced focality (-14.01 %, p = 0.0003). Colored lines
connect paired observations from the same participant (green for increase, red for decrease, gray for no change), illustrating individual response to different montage conditions.
Half violin plots show density distributions. Colored circles represent group means with black vertical lines indicating +SD while rectangles with vertical lines indicate inter-
quartile range (IQR). Statistical comparisons were performed using paired t-test or Wilcoxon signed-rank test with significance denoted as: p < 0.001, p < 0.01, p < 0.05, n.s.
= not significant. Effect size (Cohen's d/r) and percentage change are displayed above each comparison. Ty, are expressed as V/m.

p = 0.0245) emerged as significant predictors. CSF volume showed a
marginally significant association (f = —0.000311, p = 0.0720),
approaching the significance threshold, while age remained non-
significant (B = 0.000358, p = 0.5515). For the spherical target
(centered at MNI coordinates 36.10, 14.14, 0.33, r = 5 mm) anatomical
features explained 31 % of the variance in field intensity (R? = 0.309,
adjusted R? = 0.221, F = 3.4773, p=1.85x 1072). While none of the
individual predictor reached significance, the trend remained consistent
with the other ROIS where bone volume (f = —0.000317, p = 0.0631),
skin volume (f = —0.000558, p = 0.0925) were significant predictors,
and CSF volume (f = —0.00038, p = 0.0956) showed. while age (f =
—0.000146, p = 0.854) showed no significant association. Collectively,
the model explained 31-47 % of inter-individual variability in mean
TImax across all three targets. Bone, skin, and CSF volumes emerged as

significant predictors, while age showed no significant associations.
4. Discussion
4.1. TI-Toolbox: strengths and the gap it closes

TI-Toolbox unifies the end-to-end TI workflow—from DICOM pre-
processing and head-model generation through montage optimization,
field simulation, analysis, and visualization —under a single, contain-
erized framework with both GUI and CLI access. The platform lowers
technical barriers, promotes standardized outputs and reports, and en-
ables reproducible, cohort-level studies. Beyond orchestration, it adds
TI-specific capabilities: electrode mapping from free solutions to a va-
riety of EEG nets (Table S5), support for multiple optimization
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Fig. 8. Anatomical determinants of inter-individual variability in TI field exposure. A. Representative tissue segmentation from a single participant displayed in axial,
coronal, and sagittal views. Skin (orange), gray matter (gray) and cortical bone structures (white, including compact and spongy bone layers), cerebrospinal fluid (CSF)
highlighting subarachnoid and ventricular CSF distributions (dark blue). B. Visualization of skin, skull and CSF mean thickness mapping, with color gradient indicating thickness
variations (scale: X-Y mm). C. Multiple linear regression coefficient forest plot for right hippocampus showing standardized coefficients and 95 % confidence intervals. Bone
volume (f = -0.0003, p = 0.0166) and skin volume ( = -0.0006, p = 0.0245) emerged as significant predictors, CSF volume approached significance (f = -0.0003, p =
0.0720), while age showed no association ( = -0.0004, p = 0.5515). D. Partial regression plots demonstrating predictor-outcome relationships for right hippocampus Tlpqx
field intensity while controlling for other variables in the model. Individual data points represent participants (n = 36) with regression lines and significance indicators (*p <

0.05, n.s. = not significant).

approaches, computation of both Tl and gray matter surface-aligned
TIhormal, and multi-polar simulations. Every module comes with sensible
defaults to allow clinical researchers without extensive computational
background to build models, run optimizations and visualize results
within a few mouse clicks.

4.2. Related software and the SimNIBS foundation

We chose to build TI-Toolbox as an integrated wrapper around
SimNIBS [60] for several compelling reasons. First, SimNIBS provides a
Python-based interface that enables programmatic access to all core
functionalities, facilitating easy integration. This allowed us to extend its
capabilities while maintaining compatibility with its core functional-
ities. Second, SimNIBS has been validated through peer-reviewed
studies comparing simulated fields with intracranial recordings [17,
61]. Lastly, SimNIBS benefits from an active community of developers
and users who continuously contribute improvements, bug fixes, and
methodological advances.

13

However, other solutions that allow for computation of TI in silico
exist, each with distinct capabilities. Dedicated commercial solutions
include the TI Planning Tool (IT'IS Foundation) [21,62] and
HD-Targets-IFS (Soterix Medical) [22]. The TI Planning tool provides
multi-objective optimization, model individualization and have a
web-based approach removing local installation requirements while the
HD-Targets-IFS has a more limited set of functionalities utilizing the
MNI model. Notably, both commercial platforms deliver robust solu-
tions but typically require licensing fees and operate within
closed-source environments, potentially limiting reproducibility and
adaptation. Moreover, multiphysics solutions such as Sim4Life (ZMT
Zurich MedTech AG) [23] and COMSOL can provide TI simulation ca-
pabilities. While Sim4Life has been used extensively throughout the TI
literature [11,46,63] fewer research groups have chosen to rely on
COMSOL for their TI modeling efforts possibility due to increased
complexity and lack of integration within the TI research community
[24,64].

Aside of commercial solutions, other open-source alternatives that
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are not TI specific allow for computation of TI. Among them are
COMETS2 and ROAST [25,26], MATLAB based packages initially
developed for tES computation and now extend that to TI. However, a
MATLAB license and high technical abilities are required which may
hinder a wider adoption by the clinical community. More recently, the
02S?PARC platform [65] was introduced which provides a significant
contribution to support open-science. Developed as part of the NIH's
SPARC program, 02S?PARC is a cloud-based, browser-accessible plat-
form that promotes collaborative, and sustainable computational
modeling in neuroscience. For TI, users can construct workflows that
integrate multi-physics modeling capabilities for TI optimization [66],
with post-processing services including 3D visualizations and custom
analytics tools. However, the computational blocks integrated within
02S2PARC which are required for the complete TI workflow are not
open-source.

4.3. Case studies: summary and interpretation

Our case studies reveal several important insights for the practical
implementation of TI stimulation. While some of our comparisons
reached statistical significance, it is crucial to distinguish between sta-
tistical and clinical relevance. The cohort-level mean percentage dif-
ferences were small, ranging from approximately 1-4 %, and in isolation
are unlikely to be clinically meaningful as intensity remains far within
sub-threshold stimulation regime [67-69]. However, dedicated efforts
should investigate the possibility of using TI for neural entrainment
where such field variance may be critical [70,71].

The validity of electrode mapping emerged as a particularly
encouraging finding for clinical translation. When we mapped uncon-
strained genetic optimization solutions to standard HD-EEG net posi-
tions, the resulting montages preserved both intensity and focality
characteristics without substantially impairing optimization benefits
(Fig. 5). This preservation of field characteristics suggests that mapping
offers a practical route to montage standardization and smoother clin-
ical translation, eliminating the need for specialized neuronavigation
devices while maintaining targeting efficacy. The successful mapping
validates the use of pre-manufactured HD-EEG nets in clinical settings,
potentially reducing both cost and complexity of TI implementation.

Similarly, montages optimized on a generalized head model proved
adequate for both cortical and subcortical targets when applied to in-
dividual head models, suggesting that initial montage design and opti-
mization can proceed without individual MRI scans. However, in line
with previous research, accurate exposure assessment clearly requires
individualized models due to the substantial inter-individual variability
observed in our cohort [2,30,66,72]. This finding supports a hybrid
workflow where generalized models guide initial protocol development,
while individualized models enable precise dose determination and
safety assessment for clinical applications [19,20]. It is important to
note that our analysis assumes quasi-uniform field distributions within
ROIs when computing mean values, while in reality the fields exhibit
spatial gradients and hotspots that may have differential physiological
effects depending on the specific neural circuits engaged [73] (Fig. S7).
Furthermore, our analyses revealed that TI,oma did not demonstrate
superior sensitivity to methodological manipulations compared to TIjax
when evaluating mapping effects or model individualization.

Finally, analysis of inter-individual variability revealed that tissue
composition plays a critical role in determining field exposure patterns.
Consistent with previous tES literature [53,74,75], anatomical features
of the head substantially influence electric field penetration and distri-
bution. Our multiple linear regression analyses quantified these re-
lationships, demonstrating that anatomical features (age, CSF volume,
bone volume, and skin volume) collectively explained 46.9 % of vari-
ance in field intensity for the left insula and 41.1 % for the right hip-
pocampus using optimized montages. Bone volume and skin volume
emerged as significant predictors for both targets, confirming their
consistent role as barriers to electric field penetration. Interestingly, CSF
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volume showed a marginally significant association (p = 0.0720) for the
right hippocampus but not for the left insula (p = 0.5227), likely
reflecting the hippocampus's proximity to the ventricular system where
CSF-filled spaces create more pronounced current shunting effects. Age
showed no significant association with field intensity in either target,
suggesting that anatomical characteristics mediate any age-related ef-
fects on field penetration. Importantly, inter-subject variability in TI
exposure has been linked to functional outcomes, as demonstrated by
Violante et al. (2023) who found that participants' evoked BOLD signal
in the hippocampus was inversely correlated to TI field intensity,
highlighting the potential clinical relevance of individualized field
predictions for understanding treatment response variability [11].

These findings highlight a critical translational opportunity: devel-
oping predictive models that estimate key anatomical parameters from
readily obtainable clinical measurements. While our study demonstrates
that bone volume, skin volume, and CSF volume are primary de-
terminants of TI field exposure, obtaining these metrics requires MRI
scanning that may be unavailable in many clinical settings. Future
research should investigate whether easily acquired measurements such
as head circumference, demographic variables (age, sex, ethnicity),
body mass index, could serve as proxy predictors for these volumetric
parameters. Machine learning approaches could potentially map these
accessible metrics to the anatomical features that govern field penetra-
tion, enabling clinicians to approximate individualized exposure esti-
mates without neuroimaging.

4.4. Limitations

Several limitations warrant consideration when interpreting our
findings. First, our simulations employed isotropic conductivity values
and did not leverage diffusion-derived anisotropy which could influence
field exposure. However, there is not enough evidence that an aniso-
tropic approach is necessary for targeting gray matter ROIs [76]. Future
research should systematically investigate the impact of incorporating
DTI on TI field distributions.

Second, all electromagnetic field calculations relied on the quasi-
static approximation, which assumes that propagation and inductive
effects are negligible at the frequencies employed in TI stimulation
(typically 1-20 kHz carriers) [9]. While this approximation is widely
accepted for conventional tES and has been validated for frequencies up
to several kilohertz in biological tissues [77], the validity at TI carrier
frequencies warrants continued investigation [78].

Third, our electrode mapping approach, while successful in preser-
ving field characteristics, was evaluated using only the inner 185 elec-
trodes of the GSN-HydroCel-256 system (EGI/Philips) [79] (Fig. S9).
This high-density array provides smaller inter-electrode spacing
compared to traditional EEG nets, which may represent an upper bound
for successful mapping resolution. The minimum electrode density
required for accurate mapping of optimized TI montages remains un-
explored, and future work should systematically evaluate how mapping
fidelity degrades with decreasing electrode density, particularly for
standard 10-10 or 10-20 with larger inter-electrode distances. However,
a secondary analysis revealed that 10:10 systems with significantly
sparser electrode coverage may still remain an adequate solution for the
mapping functionality while the sparser 10:20 system cannot sustain the
field characteristics qualities compared to the freely optimized positions
[80] (Fig. S8).

Finally, the tissue analyzer module represents an experimental tool
that, while providing consistent measurements of anatomical properties
across our cohort, has not been independently validated against ground-
truth measurements from high-resolution CT imaging [81] or other
specialized segmentation methods [82]. Nevertheless, it serves as an
informative tool for researchers performing computational modeling by
automatically extracting key anatomical metrics that our results and the
broader tES literature consistently identify as primary contributors to
inter-individual variability. The automated extraction of tissue metrics
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provides researchers with readily available covariates that can explain
substantial portions of field variance. This functionality aims to support
hypothesis generation and covariate adjustment in group studies rather
than provide clinical-grade morphometric assessment.

4.5. Implications and future directions

The development and validation of TI-Toolbox carries several im-
plications for the broader TI research community. As an open-source
platform, the TI-Toolbox provides an opportunity for collaborative
advancement of TI methodologies. We encourage researchers to not only
utilize the platform but also to contribute improvements and share
workflows in its dedicated GitHub Discussion page [83]. TI-Toolbox
follows BIDS input/output best practices. Therefore, project di-
rectories and their data can benefit from natural integration with
existing BIDS-APPS [84] like fMRIPrep and MRIQC [85] which can ease
data processing and sharing [49,85]. We encourage users and contrib-
utors to utilize our dedicated Discussion and Issue pages to discuss
contribution opportunities and report undesired behavior. This
community-driven approach will be essential for establishing stan-
dardized protocols and accelerating the development of interoperable
tools across different research groups and clinical centers.

Our findings also inform best practices for clinical implementation of
TI stimulation. The evidence suggests that prospective clinical studies
should adopt a tiered approach to model complexity. While generalized
head models can effectively guide initial montage design and protocol
development, individualized models become crucial when relating
exposure to electrophysiological and behavioral outcomes [66,67]. This
distinction is particularly important for dose-response studies and for
understanding inter-individual variability in treatment response [11,
86]. The substantial variance in field exposure across individuals, even
with identical montages as seen here and in Karimi et al., 2025 [66],
underscores the necessity of subject-specific modeling for precision
medicine applications.

Regarding field assessment metrics, the TI-Toolbox support reporting
strategies that capture multiple aspects of TI stimulation. Because the
mechanisms underlying TI stimulation remains unclear, we recommend
that researchers report both Tl ¢ and Tlyormal, as these metrics provide
complementary information about field intensity and directionality
though their appropriateness is to be determined. While TI,x remains
the primary metric for overall exposure assessment, Tl orma may prove
particularly relevant for understanding interactions with columnar
cortical organization [87,88]. Future work should continue to develop
concurrent stimulation-recording and closed-loop paradigms to eluci-
date the online physiological effects of TI in humans and emphasize the
relevant properties that researchers should optimize for [14,66,89]. The
field will also benefit from direct measurements of fields via intracranial
systems that can be used to test the accuracy of in silico models and
better inform safety recommendations [5,17].

Furthermore, our secondary analysis revealed a nuanced picture that
can inform future studies (Fig. S7). Mean-based optimization promoted
a more homogeneous field distribution across the target region, poten-
tially engaging a larger proportion of the neural population while
avoiding hotspots that may dominate max-based optimization strategies
(Fig. S7C). However, max-based optimization reached a higher peak in
both larger and small cortical regions (Fig. S7A and B). Based on our
analysis, we recommend the usage of mean-based optimization for
larger ROIs to promote field homogeneity while smaller targets or sub-
regions may benefit from a max-based optimization. Researchers
should formally define their stimulation objectives and ROIs and apply
the appropriate optimization goal when deriving montages.

Finally, our experience with optimization algorithms provides
guidance for practical implementation. The flex-search algorithm ach-
ieves field intensities comparable to, if not better than, existing opti-
mization algorithms reported in the literature [90]. The multi-start
strategy with three independent runs effectively minimizes the
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optimization function value and improves targeting, as demonstrated for
the spherical ROI where it yielded a 4.18 % improvement. However, this
modest gain must be weighed against the tripled computational cost,
suggesting that single runs may suffice for many applications (Fig. S1).

Validation of flex-search results using a local search, where we
evaluated four candidate electrode positions around each optimized
electrode location, agreed with the flex-search suggestion, confirming
the robustness of the genetic algorithm and mapping approach
(Table S2). Furthermore, sweeping through the current ratios did not
improve the flex-search solution which assumed a 1:1 current ratio
(Table S2). Future research should systematically investigate the impact
of including current ratio as a decision variable vs a fixed 1:1 on quality
of solution and computational cost. The optimization approaches
offered in the TI-Toolbox are complementary to one another. While the
flex-search is our recommended method due to the short runtime and its
theoretical ability to find global optimum with appropriate tuning of
hyper-parameters, it provides no control over electrode placements.
Thus, the ex-search can become useful to researchers and clinicians
wishing to control the positions available during the optimization search
(Fig. 2B upper). This can become increasingly useful when real-world
limitations are accounted for like bad impedances in the occipital and
lateral regions [91] or surgical intracranial implants.

The focality optimization objective proved more nuanced and
context-dependent, requiring careful consideration of thresholding
strategies. Our analysis revealed that dynamic thresholding dramati-
cally affects results - 50 % relative thresholds increased focality by 75 %
compared to fixed thresholds, while 80 % thresholds decreased it by
36.6 %. This suggests that optimal threshold selection is critical for
successful optimization (Fig. S3) [42]. Further research should be con-
ducted into the relationship of the dynamic thresholding and ROI
location as it is possible that more superficial ROIs will benefit from high
upper bound thresholds while converging successfully on a more focal
solution.

4.6. Concluding remarks

Taken together, the case studies support a pragmatic translational
pathway: use standardized mapping for clinical usability, leverage a
generalized model to prototype montages, and rely on individualized
models for exposure quantification and safety assessment. These find-
ings support using mapped montages on standard HD-EEG nets and
generalized models for protocol development, with individualized
models reserved for precise exposure quantification. TI-Toolbox aims to
operationalize a pathway with a reproducible, open, and extensible
framework that follows neuroinformatics best practices laying the
groundwork for multi-center harmonization and prospective validation
for future human studies.
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