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NeuroSpikeX is a user-friendly tool for the quantitative analysis of neuronal calcium dynamics. It provides ro-
bust calcium spike detection, comprehensive network metrics, and intuitive graphical interfaces. NeuroSpikeX
seamlessly integrates into existing workflows using outputs from the established algorithm NeuroCa, enhancing
accuracy and reproducibility. The code effectively analyzes calcium dynamics across numerous in vitro datasets
containing multiple experimental time points. NeuroSpikeX facilitates detailed cell and network analyses in

large datasets, making rigorous calcium transient characterization accessible to researchers with minimal

coding expertise.
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1. Motivation and significance

Quantitative analysis of neuronal calcium dynamics is essential for
understanding network connectivity at single-cell resolution across di-
verse experimental models [1,2]. However, many existing tools require
steep learning curves, misidentify calcium transients under certain ex-
perimental conditions, or struggle to scale to large datasets. Improving
spike detection and network population metrics is therefore critical for
revealing how cellular and circuit dynamics respond to experimental
manipulations.

Established software such as CalmAn [3] and Suite2p [4] provide
powerful analysis pipelines but typically demand complex parameter
tuning and coding expertise. More user-friendly MATLAB-based pro-
grams, including NeuroCa [5], FluoroSNNAP [6], and Detect [7], have
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substantial limitations: they often struggle to process large-scale in
vitro datasets or lack comprehensive export options for downstream
analyses.

The contribution of NeuroSpikeX is to bridge this gap by pro-
viding an open, scalable, and accessible platform for calcium
imaging analysis. During development, NeuroSpikeX was iteratively
refined using a wide range of datasets, with hundreds to thousands
of cells, to ensure that the software could reliably handle diverse
experimental conditions. It has also been tested with both chemical
(Fluo-4 AM) and genetically encoded (GCaMP6s) indicators, confirming
that its functionality is not limited to a single imaging approach and can
efficiently examine calcium dynamics.
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Fig. 1. Flow of NeuroSpikeX analysis pipeline.

2. Software description
2.1. Software architecture

NeuroSpikeX is a MATLAB-based software package for analyzing
calcium imaging data preprocessed with ImageJ and NeuroCa. Fig.
1 summarizes the NeuroSpikeX pipeline. The workflow begins with
raw timelapse recordings that are formatted in ImageJ for NeuroCa
compatibility. NeuroCa pre-processes imaging data by identifying so-
mas, extracting fluorescence traces, and correcting for photobleach-
ing [5]. From NeuroCa, three outputs are required: normalized flu-
orescence (%dF—F; fdata), cell soma locations (center), and soma
sizes (radii) 0[5]. Data processing includes importing NeuroCa out-
puts, smoothing calcium signals, detecting transients, and performing
quantitative analyses. NeuroSpikeX evaluates and compares these data
across multiple experimental time points.

2.2. Software functionalities

NeuroSpikeX is structured around a main controller script
(Main_Calcium_Code) that automates most steps by interfacing
with modular functions. Parameter values are first defined in the Pre-
Processing App. The main script then executes the full analysis pipeline,
which includes artifact removal, time axis extraction, signal smoothing,
transient peak and decay detection, and calculation of metrics such
as spike rate and intensity at both the cell and network levels. In
addition to these computations, the pipeline generates visual outputs
— including scalograms (continuous wavelet transforms), raster plots,
and histograms of network activity — to aid interpretation. After spikes
are identified, synchronous network bursts are detected and annotated
on raster plots. Finally, two companion applications extend the analysis
by providing additional visualization and validation tools.
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2.2.1. Pre-processing app

The Pre-Processing App (Fig. 2) lets users save signal-processing
parameters. The settings are then automatically integrated into the rest
of the software.

In Tab 1 (Fig. 2A), users load data by selecting the folder for
each time point. A standardized analysis duration is set to ensure
comparability across samples with different recording lengths. Next,
users determine the noise floor, defined as the amplitude range of
baseline noise. Noise floors can be applied globally or calculated per
sample by selecting noise regions from randomly chosen cell signals
(Fig. 3). Calculated noise floors are averaged across time points and
conservatively rounded up to improve spike detection reliability. Fi-
nally, users adjust the smoothing factor. NeuroCa-derived normalized
fluorescent intensity signals are smoothed before peak detection us-
ing an exponentially weighted moving average filter. The smoothing
coefficient « is calculated as %, where n is user-defined.

Tab 2 (Fig. 2B) focuses on transient peak (spike) detection. Users
can apply signal bounds to reduce artifacts, especially with indicators
prone to noise. The key parameter is minimum peak prominence, which
sets the required rise above background for a peak to be considered
valid [8]. Table 1 gives example parameter values for different calcium
indicators.

2.2.2. Transient detection

The main script smooths NeuroCa fluorescence traces to reduce
high-frequency noise, then identifies spikes as local maxima exceeding
the prominence threshold set in the Pre-Processing App. To avoid am-
plitude underestimation from smoothing, spike intensities are measured
from the unsmoothed normalized trace at each detected peak. For each
cell, spike intensities are averaged and spike rates are calculated as
spikes per second. Network values are obtained by averaging across all
active cells in the sample.

2.2.3. Decay rate constant

For each detected transient, the code identifies the end of the decay
by calculating the derivative of the smoothed signal and locating the
point where it crosses from negative to positive after the peak. The
decay window, spanning from the peak to this endpoint, is shifted to
start at + = 0 and end at y = 0. A single-term exponential function,
ae™*, is then fit to the segment, where a represents the transient
amplitude and b the decay rate constant. Rate constants are stored for
each transient and subsequently averaged at both the cell and sample
level for downstream analysis.

2.2.4. Post-processing app

The Post-Processing App (Fig. 4) can be run after the main analysis
of any sample and provides two functions: visualization and validation.
The Visualize Cell Analysis tab (Fig. 4A) displays active and inactive
normalized cell traces for any experimental time point, along with
detected peaks and fitted decays.

The Manual Accuracy Check tab (Fig. 4B) supports two validation
modes. In the first binary mode, users classify a defined percentage
of cells as either containing transients or noise. Standard performance
metrics (sensitivity, specificity, accuracy, false-positive/negative rates,
and Youden’s J) are calculated. In the second, manually counted tran-
sients are compared with NeuroSpikeX detections. Accuracy metrics
include mean absolute error, root mean square error, systematic bias
(mean error and distribution of differences), exact match rate, accuracy
within +1 spike, and symmetric mean absolute percentage error. All
validation metrics are automatically saved.

To demonstrate the validation module, we manually counted spikes
in four control Fluo-4 AM recordings. NeuroSpikeX achieved a mean
accuracy (within +1 spike) of 70.7%, compared with 58.4% for Neu-
roCa, with similar proportions of over- and under-counted spikes. These
results underscore the importance of NeuroSpikeX’s validation module.
Calcium signal quality can vary substantially by indicator and experi-
mental setup, so users must be able to quantify accuracy and bias on
their own data to ensure the analysis is appropriate for their conditions.
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Fig. 2. Pre-Processing App. (A) Tab 1—load data from all time points, set the noise floor threshold, and define the signal smoothing factor. (B) Tab 2—optionally
set signal bounds and adjust minimum peak prominence for calcium spike detection.
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J.A. Sergay et al.

‘1 L_50a16T 8 24 sample1
Actve cais [2 v| macive cars [12
Call #2 (ominus) - Active (by code) - Peaks (Prm=1.5)

100] »
b »

SoftwareX 32 (2025) 102435

=31

Timepoint: Ominus, Call #524

Timcpoint | Toue Positive | True Negative | False Positive | Fabse Negative | Sensitivity | Specifcty | Accuracy | FP R
ominus 188 7 2| 30884 o178 osrs oz
opus = 78| = 3[osos a1 00 0s
e 151 3 B 3008t 0600 09 040

Fig. 4. Post-Processing App. (A) Visualize Cell Analysis Tab—review cell signals, detected peaks, and transient decay fits. (B) Manual Accuracy Tab—manually

verify signals and calculate accuracy metrics compared to NeuroSpikeX results.

2.2.5. Relative baseline intensity change app

The Relative Baseline Intensity Change (RBIC) App compares base-
line fluorescence between two experimental time points to estimate
intracellular calcium changes due to injury or treatment. It has three
tabs: frame selection, optional radii optimization, and analysis (Fig. 5).

In Tab 1 (Fig. 5A), users select frames that reflect baseline fluores-
cence. In Tab 2 (Fig. 5B), users can optimize soma and background
fluorescence settings. NeuroCa-derived soma coordinates and radii are
used by default, but these can be recalculated at baseline intensity for
greater accuracy. Background subtraction is performed using an annu-
lus defined by inner and outer factors relative to the soma radius (r; =
Sinner * Psoma A0 7y = fouer - Fsoma)- Adjusting these factors refines back-
ground estimation. This optimization is beneficial when NeuroCa radii
— typically defined at peak brightness — do not represent baseline
conditions.

In Tab 3 (Fig. 5C-D), users run the baseline change analysis. Fluo-
rescence change is calculated as intensity,; ., /intensity,,,.; and reported
as log,(fold_change), where 0 indicates no change, +1 a doubling, and
-1 a halving of intensity. Two analysis modes are available. Control
mode processes all control samples together to establish a baseline
distribution of fluorescence variability. The middle 95th percentile of
these values defines the “no change” boundary, ensuring that random
fluctuations are not misclassified as meaningful changes. Experimental
mode then applies these control-derived thresholds when analyzing
individual samples, allowing changes in fluorescence to be interpreted
relative to the variability observed in controls. Results are saved within
each sample directory.

3. Illustrative examples

In vitro co-cultures expressing hsyn-GCaMP6s or loaded with Fluo-
4 AM were analyzed using NeuroSpikeX. The samples represented in
Fig. 6 were first used in the Pre-Processing App to adjust and save
parameters optimized for their calcium signals. Fig. 6A shows a neuron-
specific genetically encoded indicator (AAV1-hsyn-GCaMP6s) imaged
at 10X with widefield microscopy. Fig. 6B shows a culture stained with
Fluo-4 AM, which labels both neurons and astrocytes, under the same
imaging conditions. Timelapses from both samples were preprocessed
in ImageJ and NeuroCa before analysis in NeuroSpikeX.

Table 1 lists the user-set parameters confirmed in the Pre-Processing
App for each calcium indicator. Fluo-4 AM required additional sig-
nal bounds and per-sample noise floors due to its higher variability.
The parameter values provide a reference framework for users when
configuring their own analyses.

Fig. 7 highlights the main graphical outputs of NeuroSpikeX. The
data were collected from an in vitro co-culture expressing hsyn-

GCaMP6s. The sample was stretched to 0.5 axial strain at 50 strain/s
under simple tension, and two-minute timelapses were captured at four
time points: immediately before stretch (0-), immediately after stretch
(0+), one hour after (1hr), and 24 h after (24hr).

Fig. 7A shows the raster plot at 0- with synchronous bursts high-
lighted in orange. Fig. 7B presents the average network scalogram at
0-. Figs. 7C and 7D are histograms illustrating distribution shifts across
four recording times for cellular spike rates and decay rate constants.
Finally, Figs. 7E and 7F are outputs from the Relative Baseline Intensity
Change App, showing changes in baseline fluorescence between 0- and
0+.

4. Impact

NeuroSpikeX expands the potential for studying calcium signal dy-
namics within large neural networks subjected to diverse perturbations.
Accurate and comprehensive quantification of calcium events is es-
sential for linking experimental conditions to network responses [9—
14]. NeuroSpikeX provides a practical framework for extracting both
established and underutilized metrics.

Traditional outputs such as spike rate, intensity, and network bursts
yield insight into action potential firing frequency, connectivity, and
network maturation [1,2,15,16]. NeuroSpikeX extends this analysis by
incorporating decay rate constants, which are rarely implemented in
other tools and can highlight differences in firing kinetics or calcium
clearance mechanisms [17,18]. In addition, it quantifies baseline flu-
orescence shifts across time points, offering a measure of intracellular
calcium homeostasis independent of transient activity [19].

By making these analyses accessible to users with minimal coding
experience, NeuroSpikeX lowers technical barriers while promoting re-
producibility. This enables researchers to not only characterize network
responses under different experimental conditions, but also to explore
previously underexamined features of calcium dynamics, advancing
studies of disease, injury, and circuit function.

5. Conclusions

NeuroSpikeX broadens the scope of calcium imaging analysis, com-
bining flexible spike detection, transient characterization, and intuitive
visualization tools.

The distinctive contributions of this software are: (i) visual inter-
faces that allow users to customize filtering and detection parameters
to match their experimental needs, (ii) a post-processing app for rapid
validation of automated classifications, (iii) inclusion of both decay
rate constant and baseline intensity analyses alongside traditional spike
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2

Fig. 6. Experimental images. (A) Culture transfected with AAV1-hsyn-GCaMP6s. (B) Culture stained with Fluo-4 AM.

Table 1
Parameters used for calcium signal analysis across indicators.

Calcium indicator Smooth Factor (n) Noise floor Use Min./ Max. Bounds Signal bounds Min. Peak Prominence
AAV1-hsyn-GCaMP6s 60 5% no - 1.5%
fluo-4 AM 40 1%-2% yes [-50 50]% 0.7%

metrics, and (iv) scalability for large datasets across multiple time
points with automated export for downstream use.

As with any analysis pipeline, limitations remain. NeuroSpikeX
is currently optimized for in vitro datasets and relies on NeuroCa

preprocessing. Extending compatibility to in vivo recordings, alterna-
tive preprocessing workflows, and additional calcium indicators would
broaden its applicability. Future developments may also integrate ma-
chine learning-based classification to further improve accuracy.



J.A. Sergay et al.

A
1000 5 . l .
so0f- BF + S
® 600 F SR
= iy B - . o
O 400 * 3 I 3 N
200 - i} - 1 % 1 -
0 Time (s)
C s T
===0- (Lognormal Fit)
400 o
= == (* (Lognormal Fit)
S 300 he
% 200 = 1hr (Lognormal Fit)
*® 24hr ]
100 == 24hr (Lognormal Fit)
0 0.02 0.04 006 0.08 01 012
Spike Rate (spike/s)
E
0357 e he
& o
I I
I ) >
0.3 E e
1S =
0.25} I
2 0.2
Z
=
D
2 0.15¢
0.1
0.05}
0 1 =

2 -1 0 1 2 3 4 5 6 7 8
log:(Intensity:/Intensity:)

SoftwareX 32 (2025) 102435

B
14

N

<) 108

] 6 20

g 4 =
= 2

Time (s)
D
150 ¢ 0
===(" (Normal Fit)

= +

S1o0l =" (Normal Fit)

2 1hr

;3 ===1hr (Normal Fit)

< 50| 24hr

s ~——24hr (Normal Fit)

It

0
0 0.2 0.4 0.6 0.8 1 1.2 14
Decay Rate Constant (s™)

F

@Increase (497 cells)  Same (192 cells) eDecrease (1 cell)
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and (F) spatial distribution of intensity changes.

The distinguished functions of NeuroSpikeX establish a versatile
platform for advancing calcium imaging studies and uncovering new
dimensions of network behavior.
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